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Abstract—The Signal messaging service recently deployed a
sealed sender feature that provides sender anonymity by crypto-
graphically hiding a message’s sender from the service provider.
We demonstrate, both theoretically and empirically, that this
one-sided anonymity is broken when two parties send multiple
messages back and forth; that is, the promise of sealed sender
does not compose over a conversation of messages. Our attack is
in the family of Statistical Disclosure Attacks (SDAs), and is made
particularly effective by delivery receipts that inform the sender
that a message has been successfully delivered, which are enabled
by default on Signal. We show using theoretical and simulation-
based models that Signal could link sealed sender users in as
few as 5 messages. Our attack goes beyond tracking users via
network-level identifiers by working at the application layer
of Signal. This make our attacks particularly effective against
users that employ Tor or VPNs as anonymity protections, who
would otherwise be secure against network tracing. We present a
range of practical mitigation strategies that could be employed to
prevent such attacks, and we prove our protocols secure using a
new simulation-based security definition for one-sided anonymity
over any sequence of messages. The simplest provably-secure
solution uses many of the same mechanisms already employed by
the (flawed) sealed-sender protocol used by Signal, which means
it could be deployed with relatively small overhead costs; we
estimate that the extra cryptographic cost of running our most
sophisticated solution in a system with millions of users would
be less than $40 per month.

I. INTRODUCTION

Secure end-to-end encrypted messaging applications, such
as Signal, protect the content of messages between users from
potential eavesdroppers using protocols like off-the-record
(OTR) messaging [6], [18]. These protocols guarantee that
even the service provider itself is unable to read communi-
cation between users. However, these protocols do not protect
conversation metadata, including sender, recipient, and timing.
For instance, if Alice sends a message to Bob, the server will
learn that there is a relationship between those two users and
when they communicated.

Protecting metadata. While leaking metadata may appear
reasonable when compared to revealing the contents of the
messages, observing metadata can have serious consequences.
Consider that Alice may be a whistleblower communicating
with a journalist [41] or a survivor of domestic abuse seeking

confidential support [25]. In these cases, merely knowing to
whom Alice is communicating combined with other contextual
information is often enough to infer conversation content with-
out reading the messages themselves. Former NSA and CIA
director Michael Hayden succinctly illustrated this importance
of metadata when he said the US government “kill[s] people
based on metadata” [29].

Signal’s recent sealed sender feature aims to conceal this
metadata by hiding the message sender’s identity. Instead of
seeing a message from Alice to Bob, Signal instead observes
a message to Bob from an anonymous sender. This message
can only be decrypted by Bob, who then learns from the
payload that the message originated with Alice. Ideally, using
the sealed sender protocol breaks the link between the sender
and the receiver, preventing Signal from recording sender-
recipient pairs, if ever compromised or compelled to do so.

While sealed sender is currently only deployed by Signal,
Signal’s design decisions are highly influential for other secure
messaging platforms as it is a leader in deploying cutting-
edge secure messaging features; the Signal protocol has been
integrated into other services like WhatsApp. Understanding
and uncovering flaws in sealed sender is therefore not only
important to protecting the privacy of Signal’s millions1 of
users [23], but also helps make sure sealed sender fully realizes
its goal before it is integrated into other services with other
sets of users.

A new SDA on message timings. We present a new sta-
tistical disclosure attack (SDA) applicable to messages in
Signal’s sealed sender, that would allow the Signal service—
if compelled by a government or compromised—to correlate
senders and receivers even when using the sealed sender
feature. Previously, statistical disclosure attacks (SDAs) have
been studied since the 2000s to link senders and recipients
in anonymous mix networks [14], [40], [44], [16], [37]. These
attacks work by correlating sender and receiver behavior across
multiple rounds of the mix.

It is not immediately obvious how SDAs could be applied
in the context of sealed sender messages, since there is no mix
network and the identities of senders are (by design) never
revealed. Thus, it is not clear how even the server could apply
SDA attacks, since it only learns the destinations of messages,
and never sources.

In this paper, we observe that, by assuming that most
messages receive a quick response, we can overcome these

1Signal does not publicly disclose its user count, but the app has been
downloaded millions of times.
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seeming limitations of sealed-sender messaging and employ a
SDA-style attack to de-anonymize sender-recipient pairs after
passively observing enough messages.

Moreover, and crucially, this quick-response assumption is
guaranteed to be true in the presence of delivery receipts,
a feature of Signal’s current implementation that cannot be
disabled by the user. When Alice sends Bob a sealed sender
message, Bob’s device will automatically generate a delivery
receipt that acknowledges Alice’s message. Although this
delivery receipt is also sent via sealed sender to Alice, the
predictability of its timing makes our attack more effective.

The differences between sealed sender messaging and a
general mix network allow us to develop a simple, tailored
SDA-style attack, using ideas similar to [40], which can be
used to de-anonymize a conversation between two parties.
Compared to prior work, our attack is more limited in scope,
but is also more efficient: it runs in linear-time in the amount
of traffic observed, and we prove that the probability our
attack succeeds increases exponentially with the number of
observations.

We validate the practicality of the timing attack in two
ways. First, using a probabilistic model of communication, we
prove a bound on the probability that Alice can be identified
as communicating with Bob after a finite number of messages,
independent of other users’ activity. The probability also scales
logarithmically with the number of active users.

Second, we run simulations to estimate the effectiveness
of the attack in practice. In the most basic simulation, Alice
can be uniquely identified as communicating with Bob after
fewer than 10 messages. We also add complicating factors such
as multiple simultaneous conversations with Alice and/or Bob
and high-frequency users in the system, and show that these
delay but do not prevent Alice from being de-anonymized.

Sealed sender conversations. To fix this problem, we provide
a series of practical solutions that require only modest changes
to Signal’s existing protocol. We first define a simulation-based
security model for sealed sender conversations (rather than just
single messages) that allows the original recipient of the sealed
sender message to be leaked but never the initiator of that
message (sender) through the lifetime of the conversation. We
then present three solutions that accomplish the goal of sealed
sender conversations. Each is based on ephemeral identities,
as opposed to communicating with long-term identifiers, such
as the keys linked to your phone number in Signal. Each
additional solution provides additional security protections.

Our first solution provably provides one-way sealed-sender
conversations, a new security guarantee for which we provide
a formal, simulation based definition. In this protocol, Alice
initiates a sealed-sender conversation by generating a new
ephemeral, public/secret key and anonymously registers the
ephemeral public key with an anonymous mailbox via the
service provider. Alice then uses a normal sealed sender
message to the receiver Bob to send the anonymous mailbox
identifier for his replies. Alice can retrieve Bob’s replies sent to
that anonymous mailbox by authenticating with her ephemeral
secret key, and the conversation continues using traditional
sealed sender messages between Bob’s long-term identity and
the anonymous mailbox Alice opened.

We show that this solution can be further enhanced if
both Alice and Bob use ephemeral identities, after the ini-
tial message is sent (using sealed sender) to Bob’s long-
term identity. This protocol provides both sender and receiver
anonymity for the length of a conversation if the server is
unable to correlate Bob’s receipt of the initial message and
his anonymous opening of a new mailbox, meaning the server
has only one chance to deanonymize Bob. Importantly, even if
the server is able to link these two events, this extension still
(provably) provides one-way sealed-sender.

Neither of the above solutions offer authentication of
anonymous mailboxes at the service provider, e.g., Signal.
A malicious user could open large numbers of anonymous
mailboxes and degrade the entire system. We offer an overlay
solution of blind-authenticated anonymous mailboxes for ei-
ther one-way or two-way sealed-sender conversations whereby
each user is issued anonymous credentials regularly (e.g.,
daily) that can be “spent” (verified anonymously via a blind
signatures) to open anonymous new mailboxes. To evaluate
the practicality of using anonymous credentials in this way, we
run a series of tests to compute the resource overhead required
to run this overlay. We estimate that running such a scheme
on AWS would cost Signal approximately $40 each month to
support 10 million anonymous mailboxes per day.

Our contributions. In this paper, we will demonstrate

• A brief analysis of how the Signal protocol sends mes-
sages and notifications based on source code review and
instrumentation (Section II-B);

• The first attack on sealed sender to de-anonymize the
initiator of a conversation in Signal (Section III);

• Validation of the attack via theoretical bounds and simu-
lation models (Section IV);

• A new security model that defines allowed leakage for
sender-anonymous communication;

• A set of increasingly secure solutions, that are either one-
way anonymous, two-way anonymous, and/or provide
anonymous abuse protections. (Section VI);

• An evaluation of the resource overhead introduced by
using blind signatures to prevent anonymous mailbox
abuse, and estimates of its effective scalability to millions
of users (Section VI-E); and

• Immediate stopgap strategies for Signal users to increase
the difficulty of our attack (Section VII-A).

We include related work and the relevant citations in
Section VIII. We also want to be clear about the limitations
of our work and its implications:

• We do not consider network metadata such as leakage
due to IP addresses. See Section II-C and the large body
of existing work on anonymizing proxies such as Tor.

• We do not consider messaging with more than two parties,
i.e. group messaging. This is important future work; see
the discussion in Section VII-C.

• Our attack does not suggest that Signal is less secure than
alternatives, or recommend that users discontinue using it.
Other messaging services do not even attempt to hide the
identities of message senders.

• We do not believe or suggest that Signal or anyone else
is using this attack currently.
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• While we have implemented the core idea of our solution
in order to estimate the cost of wider deployment, we have
not undergone the serious engineering effort to carefully
and correctly integrate this solution with the existing
Signal protocol software in order to allow for practical,
widespread deployment.

Responsible Disclosure. We have notified Signal of our attack
and solutions prior to publication, and Signal has acknowl-
edged our disclosure.

II. BACKGROUND

We now give some background on the structure and types
of messages in the Signal protocol [39], used in both the Signal
and WhatsApp applications.

A. Sealed Sender Messages

Although secure end-to-end encrypted messaging applica-
tions like Signal protect the contents of messages, they reveal
metadata about which users are communicating to each other.
In an attempt to hide this metadata, Signal recently released a
feature called sealed sender [36] that removes the sender from
the metadata intermediaries can observe.

To send a sealed sender message to Bob, Alice connects
to the Signal server and sends an encrypted message to Bob
anonymously2. Within the payload of this encrypted message,
Alice includes her own identity, which allows Bob to authenti-
cate the message. Importantly, Signal still learns Bob’s identity,
which is needed in order to actually deliver it. The structure
of sealed sender messages are illustrated in Figure 1.

Due to sender anonymity, Signal cannot directly rate-limit
users to prevent spam or abuse. Instead, Signal derives a 96-bit
delivery token from a user’s profile key, and requires senders
demonstrate knowledge of a recipients’ delivery token to send
them sealed sender messages. By only sharing this delivery
token with his contacts, Bob limits the users who can send
him sealed sender messages, thus reducing the risk of abuse3.

B. Types of Messages

We manually reviewed and instrumented the Signal mes-
senger Android 4.49.13 source code [42] in order to understand
the types of messages Signal sends. In addition to the messages
that contain content to be delivered to the receiver, there
are several event messages that can be sent automatically, as
discussed below. All of these messages are first padded to
the next multiple of 160 bytes, then encrypted and sent using
sealed sender (if enabled), making it difficult for the Signal
service to distinguish events from normal messages based on
their length.

Normal message. A normal text message or multimedia image
sent from Alice to Bob is the typical message we consider. A

2As we note in our threat model, we do not consider the information leakage
from networking.

3There are a number of options available to Bob that can allow more fine-
grained access control to his delivery token. Bob can opt to receive sealed
sender messages from anyone even without knowledge of his delivery token,
but this is disabled by default. Additionally, Bob can regenerate his delivery
token and share it only with a subset of his contacts to block specific users.
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Fig. 1: Structure of Signal Messages — All messages Alice sends
to Bob through Signal (receipts, text messages, or events) are first
padded to the next multiple of 160 bytes. The padded message is
then encrypted under the shared key between Alice and Bob and
then combined with ‘To: Bob’ and ‘From: Alice’ metadata to form
a Signal Message. If both Alice and Bob have sealed sender enabled
then Alice will then generate an ECDHE key pair and derive a new
shared secret with Bob’s public key to encrypt the Signal Message
and combine with ‘To: Bob’ and the public ephemeral key to form a
sealed sender message that will be sent to Bob.

Fig. 2: Stages of a Signal Message — User Interface indicating
message delivery status. One hollow check mark signifies that the
message is en route. Two hollow check marks signifies the receipt
of a delivery receipt for the message. Finally, two filled check mark
signifies the receipt of a read receipt for the message.

short (text) message will be padded to 160 bytes, and longer
messages padded to a multiple of 160 bytes, before encryption.

Delivery receipt. When Bob’s device receives a normal mes-
sage, his device will automatically send back a delivery receipt
to the sender. When Alice receives the delivery receipt for her
sent message, her device will display a second check mark on
her sent message to indicate that Bob’s device has received
the message (see Figure 2). If Bob’s device is online when
Alice sends her message, the delivery receipt will be sent back
immediately. We measured a median time of 1480 milliseconds
between sending a message and receiving a delivery receipt
from an online device. (See Figure 3 for CDF of times.) These
receipts cannot be disabled in Signal.

Read receipt (optional). Bob’s device will (optionally) send
a read receipt to the sender when he has viewed a normal
message, triggering a UI update on Alice’s device (see Fig-
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Fig. 3: CDF of Delivery Receipt timing — CDF of time between a
device sending a message (to another online device) and receiving a
Delivery Receipt. The median time is 1480ms and 90% of Delivery
Receipts were received within 1909ms.

ure 2). Unlike delivery receipts, Bob can disable read receipts.
However, Alice may still send read receipts for messages she
receives from Bob. If Bob receives a read receipt but has
the feature disabled, his user interface will not display the
notification.

Typing notifications (optional). Alice’s device will (option-
ally) send a start typing event when Alice is entering a
message, which Bob’s device will use to show that Alice is
typing. If she does not edit the message for 3 seconds, a stop
typing event will be sent. Each sent message is accompanied by
a stop typing event to clear the receiver’s typing notification.
Like read receipts, typing notifications can be disabled such
that the user will not send or display received notifications.

C. Threat Model

We assume that the service provider (e.g. Signal) passively
monitors messages to determine which pairs of users are com-
municating. This models either an insider threat or a service
provider compelled to perform surveillance in response to a
government request. We assume Alice and Bob have already
exchanged delivery tokens and they communicate using sealed
sender. Once initiated, we assume that Alice and Bob will
continue to communicate over time. Finally, we also assume
that many other users will be communicating concurrently
during Alice and Bob’s conversation, potentially with Alice
and/or Bob.

The service provider cannot view the contents of the
encrypted sealed sender messages, but knows the destination
user for these messages (e.g. someone sends a message to
Bob). We assume that Alice and Bob have verified their
respective keys out of band, and that the applications/devices
they are using are secure. Although the service provider
publishes the application, they typically distribute open-source
code with deterministic builds, which we assume prevents
targeting individual users.

We note that the service provider could infer a sender’s
identity from network metadata such as the IP address used to
send a sealed sender message. However, this is a problem that

could be solved by using a popular VPN or an anonymizing
proxy such as Tor [45], [19]. For the purposes of this paper, we
assume that users who wish to remain anonymous to Signal can
use such proxies (e.g. Orbot [2]) when sending sealed sender
messages (and, in our solution, when receiving messages to
ephemeral mailboxes), and we do not use network metadata
in our attack.

In terms of impact, we note that a recent study suggests as
many as 15% of mobile users already use VPNs every day [28];
this prevalence is even higher in east Asia and, presumably,
among vulnerable user populations.

III. ATTACK DESCRIPTION

We will present a kind of statistical disclosure attack
(SDA) that can be used to de-anonymize a single user’s
contacts after a chain of back-and-forth messages, each of
which is sent using sealed sender.

We first explain how, especially in the presence of delivery
receipts, a sealed-sender messaging system can be viewed as
a kind of mix network; this observation allows for the use
of SDAs in our context and can be viewed as one of our
contributions.

Next, we detail a simple attack for our specific use-case
of sealed sender messaging, which can be viewed as a special
case of an SDA attack proposed in [40].

A. From mixnets to sealed-sender

In anonymous networking, a simple threshold mix works
as follows: When Alice wants to send a message to Bob, she
instead encrypts it and sends it to a trusted party called the
mix. Once the mix receives messages from a certain threshold
τ number of other senders, the mix decrypts their destinations,
shuffles them, and sends all messages out to their destinations
at once. In this way, a network attacker can observe which
users are sending messages and which are receiving message,
but cannot easily infer which pairs of individuals are directly
communicating.

The basis of SDAs, first proposed by [14], is that the
messages sent through the mix over multiple rounds are not
independent; a user such as Alice will normally send messages
to the same associates (such as Bob) multiple times in different
rounds. In the simplest case, if Alice sends messages only to
Bob, and the other users in each round of mixing are random,
then a simple intersection attack works by finding the unique
common destination (Bob) out of all the mixes where Alice
was one of the senders.

Over the last two decades, increasingly sophisticated vari-
ants of SDAs have been proposed to incorporate more complex
mix networks [40], infer sender-receiver connections [37],
adapt to the possibility of anonymous replies [16], and to
use more powerful techniques to discover information about
the entire network topology [17], [44]. Fundamentally, these
all follow a similar anonymous networking model, where an
attacker observes messages into and out of a mix network, and
tries to correlate senders and receivers after a large number of
observations.

At first, it seems that the setting of sealed-sender messaging
is quite different: the server (acting as the mix) does not
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apply any thresholds or delays in relaying messages, and the
sender of each message is completely anonymous. Our key
observation is that, when many messages receive a quick reply,
as will be guaranteed in the presence of delivery receipts, a
sealed-sender messaging system can be modeled as a kind of
mix network:

• The recipient of a message, Bob, is more likely to send
some reply in a short time window immediately after he
receives a message: we call this time window an epoch.

• Bob’s reply to Alice is “mixed” with an unknown, arbi-
trary number of other messages (which could be either
normal messages or replies) during that epoch.

• The recipients of all messages during that epoch (follow-
ing the message Bob received), can be considered as the
message recipients out of the mix. Alice, who originally
sent a message to Bob and is expected to receive a quick
reply, will be among these recipients.

The task of our SDA, then, is to observe many such epochs
following messages to a single target user, Bob, and attempt
to discern the user Alice who is actually sending messages to
Bob.

B. Attack Overview

Before proceeding to an overview of our attack, we first
fix the terminology we will use:

Target/Bob The single user who is being monitored.
Associate/Alice Any user who sends some message(s) to the

target Bob during the attack window
Non-associate/Charlie Any other user not sending messages

to the target Bob.
Attack window The entire time frame under which the attack

takes place, necessarily spanning multiple messages sent
to the target Bob.

Target epoch A single epoch during the attack window imme-
diately following a sealed sender message to the target.
The epoch length is fixed depending on how long we
should expect to see a response from the recipient.

Random epoch A single epoch during the attack window, of
the same length as a Target epoch, but chosen uniformly
at random over the attack window independently from
Bob.

As discussed above, our attack setting is that a single user,
Bob, is being targeted to discover an unknown associate Alice
who is sending messages to Bob. Our SDA variant is successful
when we can assume that Alice is more likely to appear as a
message recipient in a target epoch immediately following a
message received by Bob, than she is to appear in a random
epoch when Bob did not receive a message.

Specifically, our attack is executed as follows:

1) Create an empty table of counts; initially each user’s count
is zero.

2) Sample a target epoch. For each user that received a
message during the target epoch, increase their count in
the table by 1.

3) Sample a random epoch. For each user that received a
message during the random epoch, decrease their count
in the table by 1.

Signal Traffic
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To: Eve
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Fig. 4: Attack Overview — Our SDA variant has the service provider
(Signal) keep count of all users who receive messages in the epoch
after Bob receives a message to determine who is consistently mes-
saging at the same time as Bob is receiving a message. Additionally,
the service provider will begin an epoch at a random time to keep
track of users which are messaging independent of the associates of
Bob, and those users will be deducted from the counter. As such,
“popular” users such as Charlie will not mask Alice’s behavior.

4) Repeat steps 2 and 3 for n target and random epochs.
5) The users in the table with the highest counts are most

likely to be associates of the target.

Figure 4 gives a small example to illustrate this attack.

This is similar to the original SDA of [14], with a few of the
improvements from [40] that allow for unknown recipient and
background traffic distributions, more complex mixes such as
pool mixes, and dummy traffic. In our setting, this means that
we do not need to know a priori which users in the system, or
which associates of the target user, are more or less likely to
receive messages. We also do not need a guarantee that a reply
is sent during every target epoch, or that the reply is always
sent to the same associate Alice.

Essentially, our attack relies only on the assumptions that
the distribution of background noise in each target/random
epoch pair is the same, and that associates of the target are
more likely to appear in target epochs than random epochs.
Under only these assumptions, we can see that the expected
count of any non-associate, over enough samples, is zero, while
the expected count of any associate will increase linearly with
the number of samples.

Compared to existing SDAs in the literature, our attack
is more limited in scope: it does not attempt to model the
complete distribution of all connections in the system, but
merely to separate the associates from non-associates of a
single target user. We also assume that the number of target
and random epochs are the same (though this limitation would
be easy to overcome). These limitations allow our attack to be
very efficient for the attacker, who just needs to update a table
for each user in each sample, and then find the largest values
at the end to identify Bob’s (likely) associates.

Clearly the question that remains is, how large must the
number of samples n be in order for this attack to succeed? As
we will see in the next section, the limited scope of our attack
also makes it efficient in this sense: in reasonable settings, our
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attack requires only a handful of epochs to identify the target’s
associates with high probability.

IV. ATTACK EVALUATION

In this section, we evaluate our attacks from Section III
first from a theoretical perspective, and second using a custom
simulation.

While our attack is a variant of existing statistical disclo-
sure attacks (SDAs) in the literature, the setting is slightly
different, and our goals are more modest, seeking only to de-
anonymize the contacts of a single target user.

A. Theoretical analysis of attack success

Here we provide statistical bounds to estimate the number
of epochs needed for our attack to successfully de-anonymize
one participant in a conversation. As before, say Bob is the
target of the attack, and we wish to find which other users are
communicating with Bob.

Roughly speaking, we demonstrate that (1) all users in
conversations with Bob can be identified provided he is not in
too many other simultaneous conversations with other users,
and (2) the number of epochs needed for this de-anonymization
depends logarithmically on the total number of users. These
results hold under some regularity assumptions on communi-
cation patterns, which are most sensible for short periods of
back-and-forth messaging.

Statistical Model. Our statistical analysis relies on the follow-
ing assumptions:

1) The probability of receiving a message during any epoch
is independent of receiving a message during any other
epoch.

2) Each user u (both associates and non-associates) has a
fixed probability ru of receiving a message during a
random epoch.

3) Any associate u has a fixed probability tu of receiving a
message during a target epoch, where tu > ru.

4) Every non-associate u has the same probability of re-
ceiving a message during a target or random epoch, i.e.,
tu = ru.

The last assumption states that the communications of non-
associates is not correlated with the communication patterns of
Bob, which makes intuitive sense, as they are not involved in
conversations with Bob. The regularity (that these probabilities
are fixed and the events are independent) is most reasonable
when considering short attack windows, during which any
user’s activity level will be relatively constant.

Theoretical attack success bound. In our attack, all users
in the system are ranked according to their chances of being
an associate of Bob after some number of target and random
epochs. We now provide bounds on the number of epochs
necessary to ensure that an arbitrary associate Alice is ranked
higher than all non-associates.

Theorem 1. Assume m total users in a messaging system. Let
Alice be an associate of the target Bob with probabilities ra, ta
of appearing in a random or target epoch respectively. Then,
under the stated assumptions above, the probability that Alice

is ranked higher than all non-associates after n random and
target epochs is at least

1− m

c n
a

,

where ca = exp((ta−ra)2/4) > 1 is a parameter that depends
only on Alice’s probabilities ta and ra.

The proof is a relatively standard analysis based on Ho-
effding’s inequality [27], and can be found in Appendix A.

We point out a few consequences of this theorem:

• The success of the attack depends only on the target
user Bob and his sought-after associate Alice, not on the
relative activity of any other users.

• The number of epochs needed to de-anonymize Alice
with high probability scales logarithmically with the total
number of users.

• The attack succeeds most quickly when Bob is in few
other conversations (so ta is large) and Alice is commu-
nicating mostly just with Bob (so ra is small).

The following corollary, which results from solving the
inequality of Theorem 1 and applying a straightforward union
bound, gives an estimate on how many epochs are necessary
to discover all of Bob’s contacts with high probability.

Corollary 2. Let 0 < p < 1 be a desired probability
bound, and assume m total users in a messaging system, of
whom b are associates of a target user Bob, where the i’th
associate has probabilities ri, ti of appearing in a random
or target epoch respectively. Then, under the previous stated
assumptions, with probability at least p, all b associates of Bob
are correctly identified after observing

4

mini(ti − ri)2

(
ln(m) + ln(b) + ln

(
1

1−p

))
target and random epochs.

Comparing to prior work, the closest SDA which has a
similar theoretical bound is from Danezis [14]4. That work
makes much stronger regularity assumptions than our model,
assuming essentially that (1) all epochs contain the same
number of messages (2) every target epoch contains exactly
one reply from Bob, (3) Bob receives a message from each
associate with uniform probability, and (4) all other users, and
recipients, are selected uniformly at random from all m users.
Later work also includes a theoretical bound [44], but their
model is much more general than ours, where they seek to
reveal the entire network rather than a single target user.

B. Attack simulation

We cannot directly validate the effectivenesses of our
attacks in practice, as we do not have access to Signal’s
servers and there is no public sample dataset of Signal sealed
sender messages. Instead, we perform simulations based on
generalized but realistic assumptions on message patterns. We
do not claim our simulations will reveal the exact number

4Unfortunately, there appear to be at least three slightly different versions of
this bound in the published literature ([14, equation (6)]; [15, equation (9.8)];
[40, page 5]), making it difficult to compare bounds.
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receipts that are sent within 1 second of Bob receiving a sealed sender message. A possible simple solution to this attack is to delay delivery
receipts. We tested the effectiveness of the attack with variably sized epochs and determined that if delivery receipts were delayed a full hour
(making them effectively worthless for their purpose) that with a user base of 500,000 users (each sending 50 messages a day) Bob would
need to receive 60 messages from the victim user to identify Alice as the sender.
Right: Effect of popular users in our SDA — We examined the effectiveness of our SDA variant by examining the cases where only Alice is
messaging Bob and where Bob is being messaged by Alice and 5 other users. The graph shows the rank of those messaging Bob, how many
users have received more messages than those messaging Bob. When only Alice is messaging Bob each of the attack epochs are started by
her, meaning her rank will very quickly drop. When multiple users are messaging Bob there is a range of ranks, represented by the green band
which bounds the lowest ranked user messaging Bob (on the bottom) and the highest ranked individual messaging Bob (on the top). When
epochs are begun by multiple users, an individual’s rank takes a while to drop. The graph shows that for over 45 epochs one of the users
messaging Bob has a rank of over 1000, while another user messaging Bob has dropped to a rank of 0 (meaning they have received a message
after Bob received a message the most of any user in the system). The black band considers the same situation, but with 1000 popular users
in the system which our variant accounts for.

of messages needed to deanonymize a particular user, as
that would depend on exact messaging patterns. Rather, our
simulations give a sense of the order of magnitude of messages
needed to deanonymize a user.

We simulated sequences of target and random epochs (e.g.
epochs where Bob does or does not receive a message) and
ranked users by their score. Recall that a user’s score increases
if they appear in a target epoch. We simulated 1 million active
users, with 800 messages per epoch. This corresponds to users
sending on average about 70 messages per day, with 1 second
epochs5.

Within each epoch, we select a random set of 800 message
destinations. In a target epoch, Alice (the associate) is sent
a message to represent Bob’s delivery receipt that would be
sent to her automatically. The remaining messages are chosen
randomly: 25% of messages are selected as “repeat” messages
(same sender and receiver) from prior epochs (representing one
side of a prior conversation), and another 25% are selected
as “responses” to messages in prior epochs (representing a
conversation’s response). The remaining 50% of messages are
messages from and to a random pairing of users from the
set of 1 million active users. We find that the percent of
repeats/replies has limited impact on the number of epochs
to identify an associate until over nearly all messages are
repeats (i.e. each epoch is essentially the same small set of
senders/receivers). We choose half of the epochs to be target

5Based off our observation of round-trip delivery receipt times

epochs (where Alice messages Bob) and half as random (where
Alice does not message Bob).

Social graph significance. We note our experiment does not
rely on a particular social graph (or rather, assumes a fully
connected one), as any user can message any other. In prelim-
inary experiments, we examined the impact of several different
graph generators that are designed to simulate social networks,
but found no noticable change in our results. Specifically, we
used the Erdös-Rényi [20] model, Barabási-Albert [3] model,
Watts-Strogatz [52] model, and a fully connected graph, but
found they all resulted in a similar number of epochs needed to
deanonymize the associate (Alice). Given this result, we opted
to use the fully connected graph model for simplicity.

Figure 5 shows the result of several attack simulations. We
ran each attack simulation for 100 runs, and at each epoch,
report the average rank of Alice’s score based on our attack.
First, in the “Alice Only” variant, only Alice messages Bob
(and no one else). Even though there are thousands of other
users messaging randomly, Alice’s score quickly becomes the
top ranked user: within 5 messages, she is uniquely identified
as messaging Bob.

If multiple users are also messaging Bob while Alice does,
it takes more total epochs to identify Alice (and her co-
associates messaging Bob). In this scenario, each target epoch
is selected to be either Alice or one of 5 co-associates that
messages Bob (6 total conversations with Bob).
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If there are popular users present (e.g. users that receive
messages in a large fraction of all epochs), then it may be
more difficult to identify Alice without accounting for them.
However, since we remove users that also appear in a large
fraction of random epochs, Alice is still eventually ranked
uniquely as messaging Bob.

Finally, we combine our popular users and multiple mes-
sagers into a single simulation, which is dominated by the
multiple messagers effects.

Summary. In the worst case, it takes on the order of 60 epochs
to identify the users messaging Bob. Note that only half of
these are messages to Bob, and the other half are random
epochs. If only one person is messaging Bob, the number of
messages needed is under 5 to identify Alice as the associate
of Bob.

V. FORMALIZING SEALED SENDER CONVERSATIONS

Sealed sender messages were initially introduced in Signal
to obscure the communication graph. As we have just shown,
the current instantiation fails to accomplish this goal. Before
we present our solutions to this problem, we briefly discuss
formalizations for the properties that a perfect implemen-
tation should accomplish. We call such a system a sealed
sender conversation, because unlike sealed sender messages,
the anonymity properties must be maintained throughout the
lifetime of the conversation.

Our goal in introducing this formalization is to specify
exactly how much information a service provider can learn
when it runs a sealed sender conversation protocol. In a sealed
sender conversation between two users, the mediating service
provider should learn only the identity of the receiver of
the first message, no matter the messaging pattern of the
users. Unlike sealed sender messages, the anonymity of the
sender must be maintained across the full conversation, not
just individual messages. As such, we require a definition that
argues about the privacy of the users at the conversation level,
rather than at the message level, as in sealed sender messag-
ing. We formalize sealed sender conversations by giving an
ideal functionality, presented in Figure 6. We note that this
definition fundamentally reasons over conversations, even if it
does this in a message-by-message way by using an internal
conversation table. Our ideal functionality captures our desired
properties by specifying the maximum permissible information
leakage for each message, depending on which member of the
conversation sent the message.

Our ideal functionality models a sealed sender conversation
and explicitly leaks certain information to the service provider.
Users are able to do three things: (1) start a conversation,
(2) send messages in an existing conversation, and (3) receive
messages. When a user starts a new conversation, the initial
receiver’s identity is leaked to the service provider, along with
a unique conversation identifier cid. All subsequent messages
sent in this conversation are linked with the identifier cid. If
they are being sent to the initial receiver, their destination is
leaked. Otherwise, the service provider learns that the message
is part of some known cid, but never learns the identity
of that end of the conversation. While we do not explicitly
include timestamps in our modeling, timestamps are implicitly

captured by our model because the service provider is notified
immediately whenever the ideal functionality receives a mes-
sage. This is equivalent because the absolute time at which a
message is sent is not important in our context, just the relative
time between messages.

Users receive messages via pull notifications. These pull
notifications leak no more information than the message itself
does; if the receiver is anonymous, then the pull notification
process leaks no information about the receiver. While we
formalize this notion using pull notifications, this is compa-
bile with Signal-style push notifications, where the receiver
and the server maintain long-lived TLS connections. These
communication channels are equivalent to a continuous pull
notification, and thus a simulator can easily translate between
the two communication paradigms. Finally, because the service
provider may arbitrarily drop messages, we give the service
provider the power to approve or deny any pull notification
request.

While leaking the conversation identifier might seem like
a relaxation of sealed sender messages, we note that our
timing attack succeeds by guessing with high likelihood the
sender of a message. As such, Signal’s sealed sender does
not meet this ideal functionality, as our timing correlation
attack in Section III shows. This is because the cid of a
message, although not explicitly sent with the ciphertext, can
be inferred with high probability by its timing. One final note
is our definition does not prevent a service provider from
using auxiliary information about a conversation (e.g. time
zone information) to reidentify the initiator of the conversation.
Such attacks are incredibly difficult to formalize and are
beyond the scope of our work. Rather, we only require that the
protocol itself cannot be used to reidentify the participants.

A. Security Definition for One-Way Sealed Sender Conversa-
tions

We now give a formal definition for one-way sealed sender
conversations using a simulation based security definition.
We present the ideal functionality for one-way sealed sender
conversations in Figure 6. Importantly, this definition does
not rule out learning information about the sender based on
timing of sending messages, e.g. the sender’s time zone. We
model the service provider as a party Pservice that can control
delivery of messages and delivery receipts. Note that the ideal
functionality leaks the contents of the message m to the service
provider only if the receiver of that message is corrupted. This
models that if the service provider can decrypt the messages it
is relaying, it may make delivery decisions based on knowledge
of the plaintext.

We say that a protocol securely realizes this ideal function-
ality (in the stand alone model) if a corrupted service provider
and an arbitrary number of corrupted users cannot determine
if they are interacting in the real experiment or with the
ideal experiment with non-negligible probability in the security
parameter λ. In the real experiment, the adversary starts by
statically corrupting the service provider and any number of
users. Then, each honest user follows it own arbitrary strategy,
interacting with the service provider using the protocol. The
corrupt parties can follow an adversarially chosen strategy. In
the ideal experiment, the adversary again begins by statically
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Ideal Functionality For Sealed Sender Conversation System

• P1, . . . , Pn: A set of n (possibly corrupt) users of the system
• Pservice: A single corrupt service provider that is in charge of relaying messages between users
• Active Conversation Table Cactive with entries of the form (convo-id,initiator,receiver), Delivery Pending Message

Table Mpending with entries of the form (convo-id,sender,receiver,plaintext)

Start Conversation: Upon receiving a message (StartConvo, Pj) from a user Pi, the ideal functionality generates a unique identifier
cid, and performs the following:
• If Pi or Pj is corrupt, send (ApproveNewConvoCorrupt, Pi, Pj , cid) to Pservice
• If both Pi and Pj are honest, (ApproveNewConvo, Pj , cid) to Pservice

Pservice responds to either message with (Approve) or (Disapprove)
• If Pservice responds with (Disapprove), the ideal functionality halts
• If Pservice responds with (Approve), the ideal functionality sends (NewConvo, Pi, Pj , cid) to both Pi and Pj and adds (cid, Pi, Pj)

to Cactive.

Send Message: Upon receiving a message (SendMessage, cid,m) from party Pi, the ideal functionality checks the active conversations
table Cactive for an entry (cid, Pj , Pi) or (cid, Pi, Pj). If no such entry exists, the ideal functionality drops the message. The ideal
functionality generates a unique identifier mid and performs the following:
• If there is an entry and Pj is corrupted, the ideal functionality sends (NotifySendMessageCorrupt, cid, mid,m, Pi, Pj) to Pservice,

and add (Pi, Pj , cid, mid,m) to Mpending.
• If an entry (cid, Pi, Pj) exists, send (NotifySendMessage, cid, mid, Pj , |m|) to Pservice, and add (Pi, Pj , cid, mid,m) to Mpending.
• If an entry (cid, Pj , Pi) exists, send (NotifyAnonymousSendMessage, cid, mid, |m|) to Pservice, and add (Pi, Pj , cid, mid,m) to

Mpending.

Receive Message: Upon receiving a message (ReceiveMessage, cid) from party Pj , the ideal functionality checks Cactive for an entry
(cid, Pj , Pi) or (cid, Pi, Pj). If such an entry exist, it performs one of the following:
• If Pi is corrupt, the ideal functionality then sends (ApproveReceiveMessageCorrupt, cid, Pi, Pj) to Pservice, which responds with

tuples of the form (cid, Pi, Pj ,m). The ideal functionality then sends (Sent, Pi, Pj , cid,m) to Pj for each such tuple.
• If there is an entry (cid, Pj , Pi) in Cactive and entries (Pi, Pj , cid, mid,m) in Mpending, the ideal functionality sends

(ApproveAnonymousReceiveMessage, cid, mid, |m|) to Pservice for each such entry. Pservice responds to each message with either
(Approve, mid) or (Disapprove, mid). If Pservice responds with (Approve, mid), the ideal functionality sends (Sent, Pi, Pj , cid,m)
to Pj .

• If there is an entry (cid, Pi, Pj) in Cactive and entries (Pi, Pj , cid, mid,m) in Mpending, the ideal functionality sends
(ApproveReceiveMessage, cid, mid, |m|, Pj) to Pservice for each such entry. Pservice responds to each message with either
(Approve, mid) or (Disapprove, mid). If Pservice responds with (Approve, mid), the ideal functionality sends (Sent, Pi, Pj , cid,m)
to Pj .

Fig. 6: Ideal functionality formalizing the leakage to the service provider for a one-way sealed sender conversation.

corrupting the service provider and any number of users. Then,
the honest players follow an arbitrary strategy but interact
directly with the ideal functionality. The service provider and
corrupted users interact with a simulator Sim, which mediates
interaction between the adversary and the ideal functionality.
At the end of each experiment, a distinguisher algorithm takes
in the views of the service provider and the corrupted parties
and attempts to determine if the interaction was in the real
experiment or the ideal experiment. Note that because the
simulator may not know which parties are interacting, it cannot
leak this information to the adversary.

We denote the output of the ideal world experiment for any
ideal world adversary Sim and honest players with arbitrary
strategies PH on inputs x as IdealPH ,Sim(1λ, x). We denote
the output of the real experiment with adversary A running
protocol Π on input x as RealPH ,A,Π(1λ, x). We say that a
protocol Π securely realizes the ideal functionality described
in Figure 6 if there exists a simulator Sim such that∣∣IdealPH ,Sim(1λ, x)− RealPH ,A,Π(1λ, x)

∣∣ < negl(λ)

VI. SOLUTIONS

We now present three protocols that follow the security
definition from Section V and, in particular, prevent the attacks
presented in Section III. We first outline a one-way sealed
sender conversation in Section VI-B, in which the initiator
of the conversation remains anonymous. We prove that our
construction meets the definition presented in Section V-A. In
Section VI-C, we extend this protocol to give better privacy
to the receiver using a two-way sealed sender conversation.
Finally, in Section VI-D, we address denial of service attacks
that malicious users could launch against the server.

Overview of Solutions. Our key observation is that the attack
described in Section III is only possible because both users in
a conversation are sending messages to the other’s long-term
identity. Over time, these messages can be correlated, revealing
the identities of the users. On the other hand, if anonymous and
ephemeral identities are used instead, then user’s true identities
can remain hidden. However, anonymous identities lead to a
bootstrapping problem: how do users initiate and authenticate
a conversation if they are using fresh, pseudonyms?
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In a one-way sealed sender conversations, the identity
of one side of the conversation is leaked, namely the initial
message receiver, in order to solve this bootstrapping problem.
This closely models the situation of a whistle-blower, where
the informant wishes to stay anonymous, but the reporter
receiving the information can be public. At a high level, the
initiator of the conversation begins by creating a fresh, anony-
mous identity and then sends this identity to a receiver via a
normal sealed sender message (thus solving the bootstrapping
problem). The conversation proceeds with the initiator of the
conversation sending messages to the receiver using sealed
sender (one way), and the conversation receiver sending replies
to the initiator’s anonymous identity. Importantly, the identity
of the initiator is never leaked, as no messages exchanged in
the conversation contain that person’s long-term identity. We
prove that out protocol securely realizes the definition of sealed
sender conversations presented in Section V-A.

A straightforward extension is to move towards two-way
sealed sender conversations where both parties use anonymous
identities. This solution is described in Section VI-C. When an
initiator starts a conversation as described above, the receiver
also creates a new anonymous identity and sends it via sealed
sender back to the conversation initiator. This protocol offers a
single opportunity to link the receiver to their new, anonymous
identity (by correlating the timing of the received message and
the registering of a new public key), but, as we have shown,
network noise makes it difficult to re-identify users with only
a single event. Even in the unlikely case that the conversation
receiver is linked to their long-term identity, we show that the
conversation initiator remains anonymous.

Both protocols place the service provider at risk of denial
of service attacks, and so in Section VI-D, we aim to limit
the power of users to arbitrarily register anonymous identities.
Allowing users to create unlimited anonymous identities would
lead to strain on the service provider if there is no way
to differentiate between legitimate anonymous identities and
malicious ones. To prevent these attacks, users are each given
a limited number of anonymous credentials that they can
“spend” to register anonymous keys, reminiscent of the earliest
e-cash systems [8]. These credentials can be validated by the
service provider to ensure that a legitimate user is requesting an
anonymous identity without revealing that user’s identity. We
use blind signatures to implement our anonymous credentials.
We evaluate the practicality of this approach in Section VI-E
and show that it could be deployed cheaply for either one-way
or two-way sealed sender conversations.

For simplicity, we assume that communicating users have
already exchanged delivery tokens. Any protections derived
from these delivery tokens can be added to the following
protocols in a straightforward manner. Additionally, we as-
sume users connect to the service provider via an anonymous
channel, e.g., Tor or Orbot.

A. Preliminaries

Sealed Sender We assume that the service provider imple-
ments the sealed sender mechanism described in Section II-A.
Specifically, we assume that a client can generate a pub-
lic/private key pair and publish their public key as an address
registered with the service. If the server permits it through

some verification process, the server will allow messages to
be sent to that public key without a sender.

More formally, we assume that the system has a sealed
sender encryption scheme Πssenc. While Signal does not give a
proof of security for the scheme it uses, for our constructions
we will assume that Πssenc is a signcryption scheme that
satisfies ciphertext anonymity [35] and adopt the notation
presented in [51] for its algorithms6. We say a sealed sender
encryption scheme Πssenc is a set of three algorithms:

• SSKeyGen(1λ)→ (pk, sk) generates a public/private key
pair.

• SSEnc(m, sks, pkr) → c takes in a message m, the
sender’s secret key sks and the receiver’s public key pkr,
and outputs a ciphertext c

• SSDecVer(skr, c)→ {(m, pks),⊥} takes in the receiver’s
private key skr and a ciphertext c and either outputs
a message m,and the public key of the sender pks,
or returns the error symbol ⊥. (Note that this actually
constitutes decryption followed by verification in the
notation of [51], returning ⊥ when either step fails.)

Formal security definitions are given in [51]. In short, the
scheme satisfies (1) message indistinguishability, (2) unforge-
ability, and (3) ciphertext anonymity, meaning the ciphertext
reveals nothing about the sender or receiver.

Blind Signatures The mechanism to prevent abuse for the
creation of anonymous accounts relies on the cryptographic
primitive of blind signatures, as first proposed by [8]. Blind
signature schemes have 5 algorithms: BSKeyGen, BSBlind,
BSSign, BSExtract and BSVerify. BSBlind takes in the public
key of the signer, a message, and some randomness and outputs
a blinded message. BSSign takes in the signer’s private key and
a blinded message and outputs a blinded signature. BSExtract
takes in a blinded signature and the randomness used in
blinding and outputs a normal signature. Finally, BSVerify
takes in a message and the signer’s public key and decides
if the signature is valid.

The interaction between a server with the signing keypair
sk, pk and a client is as follows:

1) Client generates the blinded message
b← BSBlind(m, pk; r) for r←$ {0, 1}λ

2) Client sends b to the server for signing.
3) Server computes the blinded signature

sblind ← BSSign(b, sk) and returns it to the client.
4) Client extracts the real signature

s← BSExtract(sblind, pk; r)
5) Client, in a different network connection, sends the initial

message m and the real signature s to the server, who runs
BSVerify(pk,m, s)

The blind signature scheme should have the usual signature
unforgeability property. Additionally, it should be impossible
for a server to link the blinded message and blinded signature
to the real message and real signature. We use the RSA-based
construction of blind signatures from [8].

6We note that ciphertext anonymity is actually a stronger primitive than
required, as there is no need for receiver anonymity.
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B. One-way Sealed Sender Conversations

First, we provide the construction of sealed sender conver-
sations which we build on in this solution and those that follow.
Recall that a sealed sender conversation reveals the flow of the
conversation (including message timing, etc.) and the identity
of the initial receiver, but at no point can the service provider
identify the initial sender.

The intuition behind our solution is straightforward: when
initiating a new conversation, a sender generates an ephemeral,
per-conversation key pair. This key pair is registered with the
service provider anonymously, but otherwise is treated as a
normal identity in the system. Throughout the lifetime of the
conversation, this identity key is used instead of the long-term
identity of conversation initiator. As long as the ephemeral
public key is never associated with the long-term identity, and
never used in any other conversations, the service provider
cannot learn anything about the true identity of the user that
generated that ephemeral identity.

Generally, the flow of a sealed sender conversation is as
follows. During the setup, each sender Ps with long-term keys
(pks, sks) creates entries (Pr, pkr, pks) for each receiver Pr
with public key pkr. Some user, who we call the initiator,
starts the conversation by running the Initiate Conversation
protocol below where Ps generates and registers an ephemeral
identity for a receiver Pr. Whenever the receiver comes online
(or possibly immediately by receiving a push notification)
and receives the appropriate information, they will locally
associate the ephemeral key with the initiator for the duration
of the conversation. From this point, both users may send
messages using the Send Message protocol and receive those
messages from the service provider via Push Message, over
an open, long-term connection. The protocol Open Receiver
Connection is used to establish a channel for such push
notifications, either for a user’s long-term mailbox, or for an
ephemeral mailbox created for a single conversation.

Every user must maintain a conversation table, to re-
member where messages should be sent in all ongoing con-
versations. Each table entry stored by a user Ps is a tuple
(Pr, pkβ , pkα, skα), where Pr is the actual message recipient,
pkβ is the recipient’s mailbox (public key) to which the
message is addressed, and (pkα, skα) is the key pair used to
sign and encrypt the message. Depending on who initiated
the conversation, one of pkβ or pkα will correspond to an
ephemeral identity pke, and the other will correspond to one
of the long-term identities pkr or pks.

Initiate One-Way Sealed Conversation to Pr:

1) Initiator Ps does the following:
a) looks up Pr’s long-term public key pkr
b) generates fresh ephemeral keys (pke, ske) ←

Πssenc.SSKeyGen(1λ)
c) encrypts c← Πssenc.SSEnc(‘‘init’’‖pke, sks, pkr)
d) connects to the service provider anonymously and

sends c‖pke for pkr
e) appends (Pr, pkr, pke, ske) to the conversation table
f) Registers a new mailbox for the public key pke and uses

Open Receiver Connection with keypair public key
pke, ske to establish a connection for push notifications.

2) The service provider delivers c (sealed sender) to Pr
based on pkr, either immediately pushing the message
or waiting for the receiver to come online.

3) When the receiver Pr receives the message to its long-
term mailbox pkr, it:

a) decrypts and verifies
(‘‘init’’‖pke, x, pks)← Πssenc.SSDecVer(skr, c)

b) appends (Ps, pke, pkr, skr) to the conversation table
c) uses Send Message to send a delivery receipt to Ps

(which now goes to pke from the conv. table)

Send Message to P∗

1) Sender looks up freshest entry (P∗, pkβ , pkα, skα) in the
conversation table.

2) Sender encrypts c← Πssenc.SSEnc(m, skα, pkβ)
3) Sender sends c for pkβ to the service provider, anony-

mously if necessary.
4) If there is an open connection associated with pkβ , the

service provider uses Push Message for c over that con-
nection. Otherwise, the service provider sets the message
as pending in the mailbox associated with pkβ

Open Receiver Connection for (pkβ , skβ)

1) Receiver connects to the service provider and demon-
strates knowledge of key pair (pkβ , skβ) such that there
is a registered mailbox for public key pkβ

2) The receiver and the server build a long-term connection
for message delivery, indexed by pkβ

3) If there are any pending messages in the mailbox associ-
ated with pkβ , use Push Message for those messages.

Push Message c to pkβ

1) Service provider looks up an open connection indexed
by pkβ . If such a connection exists, the service provider
sends c over it

2) Receiver decrypts c as (m, pkα) ←
Πssenc.SSDecVer(skβ , c) and verifies an entry
(P∗, pkα, pkβ , skβ) exists in the conversations table,
dropping it otherwise.

We prove that this construction securely realizes the defi-
nition Figure 6 in the standalone model in Appendix B. The
proof is straightforward: we construct a simulator and show
that an adversary corrupting the service provider and any
number of clients cannot distinguish between the real protocol
and interacting with the ideal functionality.

C. Two-way Sealed Sender Conversations

While the construction above successfully realizes sealed
sender conversations, the identity of the receiver is still leaked
to the service provider. Ideally, we would like for both users in
a conversation to communicate using only ephemeral identities,
so that the service provider sees only the flow of messages
in a conversation but does not learn either party’s long-term
identity. However, this again leads to a bootstrapping problem:
if both users use fresh, anonymous identities, how do they
exchange this ephemeral contact information while remaining
anonymous?
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While heavyweight cryptography (such as PIR or ORAMs)
may provide a more robust solution, in this work we focus on
scalable solutions that might plausibly be adopted by secure
messaging platforms. As such, we present a natural extension
of our one-way sealed sender conversation protocol.

After an initiator creates an ephemeral key pair, opens
a new mailbox, and sends this to the receiver, the receiver
responds by doing the same thing: creating a second ephemeral
key pair, opening a second mailbox, and sending this back
to the initiator as part of the initial delivery receipt. After
this, both the conversation initiator and receiver will have
conversation table entries of the form P∗, pke1, pke2, ske2,
with two different ephemeral keys for sending and receiving
messages in the conversation.

This requires minimal changes to the previous protocol.
Essentially, the Initiate protocol gains another section for the
recipient to create their own ephemeral identity, but the Send,
Open Connection, and Push Message protocols are identical.
In Appendix C we provide the full details of these updated
protocols, along with an additional protocol Change Mailbox
which is used to update an ephemeral key pair for one side of
an existing conversation.

Security. We have two security goals for this protocol. First,
we require that this protocol is a secure instantiation of a one-
way sealed sender conversation, just like the protocol above.
This is clear, as the only party whose behavior changes from
the protocols in Section VI-B is the initial receiver. Simulating
their behavior is easy because that user’s identity is already
leaked by the ideal functionality. As such, the proof remains
nearly identical to that in Appendix B.

Second, we require that the service provider has only one
chance to identify the initial receiver. Note that besides the
initial messages, all sent messages are only linked to the
anonymous identities. Thus, no information about the users’
true identities are leaked by these messages. This only source
of information about these identities comes from the timing
of the mailbox’s initial opening, so this is the only chance to
identify the initial receiver. As described in our simulations,
in a reasonably busy network it is difficult to link two events
perfectly. Instead, it requires many epochs of repeated behavior
to extract a link. Therefore, giving the service provider only
a single chance to de-anonymize the receiver will most likely
(though not provably) provide two-sided anonymity. To further
decrease the chance of a successful attack, the initial receiver
can introduce some initial random delay in opening and using
a new mailbox.

Obscuring the Conversation Flow. A natural generalization
of this approach is to switch mailboxes often throughout a
conversation, possibly with each message. This may provide
further obfuscation, as each mailbox is only used once. While
analyzing how well this approach would obscure the conversa-
tion flow is difficult, as linking multiple messages together
requires the service provider to find a timing correlation
between the various mailboxes’ activities, it is clear it provides
no worse anonymity than the above construction.

D. Protecting against Denial of Service

Both constructions presented above require users to anony-
mously register public keys with the service provider. This
provides an easy way for attackers to launch a denial of
service attack: simply anonymously register massive numbers
of public keys. As such, we now turn our attention to bounding
the number of ephemeral identities a user can have open,
without compromising the required privacy properties.

We build on anonymous credential systems, such as [8].
Intuitively, we want each user in the system to be issued a
fixed number of anonymous credentials, each of which can
be exchanged for the ability to register a new public key. To
implement this system, we add two additional protocols to
those presented above: Get signed mailbox key and Open a
mailbox.

In Get signed mailbox key, a user Ps authenticates to the
service provider with their long-term identity pks and uses a
blind signature scheme to obliviously get a signature σes over
fresh public key pkes. We denote the service provider’s keypair
(pksign, sksign). In Open a mailbox, a user Ps anonymously
connects to the service provider and presents (pkes, σes). If
σes is valid and the service provider has never seen the public
key pkes before, the service provider opens a mailbox for the
public key pkes. These protocols are described below:

Get signed mailbox key

1) User authenticates using their longterm public key. Server
checks that the client has not exceeded their quota of
generated ephemeral identities.

2) Client generates (pke, ske)← Πssenc.SSKeyGen(1λ)
3) Client blinds the ephemeral public key

b← Πbs.BSBlind(pke, pksign; r) with r ← {0, 1}λ.
4) Server signs the client’s blinded public key with sblind ←

Πbs.BSSign(b, sksign) and returns the blinded signature to
the client.

5) Client extracts the real signature locally with σe ←
Πbs.BSExtract(sblind, pksign; r)

Open a mailbox

1) Client connects anonymously to the server and sends
pke, σe

2) Server verifies Πbs.BSVerify(pksign, σe) = 1 and checks
pke has not been used yet.

3) Server registers an anonymous mailbox with key pke with
an expiration date.

Integrating these protocols into one-way sealed sender
conversations and two-way sealed sender conversations is
straightforward. At the beginning of each time period (e.g. a
day), users run Get signed mailbox key up to k times, where
k is an arbitrary constant fixed by the system. Then, whenever
a user needs to open a mailbox, they run the Open a mailbox
protocol. Sending and receiving messages proceeds as before.

It is important that (1) the signing key for the blind
signature scheme public key pksign be updated regularly, and
(2) anonymous mailboxes will eventually expire. Without these
protections, malicious users eventually accumulate enough
anonymous credentials or open mailboxes that they can ef-
fectively launch the denial of service attack described above.
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Network ECDSA Get Signed Open a
Conditions KeyGen Mailbox Key Mailbox

End-to-End 0.049 0.061 0.039
User Local 0.049 0.032 0.024
Server Local N/A 0.013 0.001

TABLE I: Timing results (in seconds) for protocols of Section VI-D,
using RSA-2048 ciphertexts and ECDSA.

Additionally, each time period’s pksign must be known to all
users; otherwise the server could use a unique key to sign each
user’s credentials, re-identifying the users.

E. Blind Signature Performance

To test the feasibility of using blind signatures, we im-
plemented the protocols in Section VI-D for a single client
and server. This represents the cryptographic overhead of
applying our solution, as the remainder (sending and receiving
messages, registering keys) are services already provided by
Signal.

The networking for both the client and server are written
in Python, with the Django web framework [1] on the server.
Starting with the code provided in [4], we implement an RSA-
2048 blind signature [8] library in Java that can be called via
RPC. Although RSA ciphertexts are large, they are very fast
to compute on modern hardware.

We evaluated our implementation by running the server on
an AWS instance with 2 Intel Xeon processors and 4 GB of
RAM. The client was running on a consumer-grade laptop,
with a 2.5 GHz Intel i7 with 16 GB of RAM, located in the
same region as the AWS server. We report the timing results in
Table I for each protocol. To better isolate the overhead from
network delay, we also report the execution time when server
and client are running locally on the same machine.

Importantly, ECDSA KeyGen can be run in the background
of the client, long before the interactive phase of the proto-
col starts. For maximum security, a user may close an old
mailbox and get a new signed key (with the same anonymous
connection), and then open a new mailbox with each message
that they send. This incurs an overhead of less that 100ms,
even including network delay. The communication overhead
of running this full protocol is less that 1KB, constituting 3
RSA-2048 ciphertexts and 1 ECDSA public key.

F. Deployment Considerations

Key Rolling. It is critical that the server maintain a database
of ephemeral identities previously registered on the system in
order to check for re-use of old ephemeral identities. Note
that to prevent reuse, this database must be maintained for as
long as the identities are valid and grows with the number of
mailboxes, not the number of users.

We suggest that Signal update their mailbox signing key at
regular intervals, perhaps each day, and leave two or three keys
valid for overlapping periods of time to avoid interruptions in
service. Because the validity of a signed mailbox key is tied to
the signing key, each update allows the server to “forget” all

the keys that it saw under the old signing keys as they cannot
be reused.

Mailbox Opening. It is important that users perform Get
signed mailbox key (where Signal learns a user’s identify)
and Open a mailbox in an uncorrelated way. Otherwise, Signal
could link the two and identify the anonymous mailbox. We
recommend performing Get signed mailbox key at regular
intervals (e.g. the same time each day), but careful consid-
eration must be taken for users that are offline during their
usual time. Users should not come online and perform both
operations immediately if sending to a new conversation. To
avoid this, clients should maintain a small batch of extra signed
mailbox keys for new conversations.

Cost Overhead. We analyze the worst case cost of scaling our
protocol. We generously assume that 10 million anonymous
mailboxes will be opened every day. The server’s part of
opening these mailboxes constitutes calls to BSVerify and
BSSign and a database query (to check for repeated identi-
ties). In our experiments, the two blind signature operations,
including the Django networking interface, took a cumulative
.014 seconds. Using AWS Lambda, supporting 10 million
messages each day would cost approximately $10 per month.
We estimate that doing 10 million reads and writes a day
to a DynamoDB database would cost approximately $20 per
month, using AWS’s reserved capacity pricing.

Using the key rolling scheme described above, the database
contains at most the number of messages delivered in a
day times the number of simultaneously valid keys. At 10
million messages each time with a two overlapping valid
keys, this means the database would contain at most 20
million ephemeral identities. Assuming 256-bit identity values,
the entire database would never exceed a few GB of data.
Therefore, we conservatively estimate that the marginal cost
of supporting our protocol for 10 million ephemeral identities
per day would be under $40 per month. We note our analysis
does not consider the personnel cost associated with develop-
ing or maintaining this infrastructure. Ideally, this would be
amortized along with Signal’s existing reliability and support
infrastructure.

VII. DISCUSSION

A. Other solutions

In this section, we consider alternative, minor changes to
the existing sealed sender protocol and evaluate their effective-
ness.

Random delays. Users could send delivery or read receipts
after a random delay, making it harder for attackers to corre-
late messages. This forces an attacker to increase the epoch
duration to perform the same attack. We analyze the effect
of varying epoch duration in Figure 5, and find that even with
hour-long epochs—likely rendering delivery receipts useless—
users could still be identified within 60 messages. We conclude
that injecting random delays is an ineffective way to achieve
anonymity.

Cover traffic. Users could send random sealed-sender mes-
sages that are transparently ignored by the recipient in order
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to cover for the true pattern of ongoing conversations. Based
on our experiments, we again see that cover traffic slows down
our attack, but at a linear rate with the amount of extra traffic:
even with 10x extra messages, the anonymity set of potential
senders to Bob after 100 messages is under 1000 users. This
mitigation strategy has obvious costs for the service provider,
without significant benefit to user anonymity.

Disable automatic receipts. While Signal users can disable
read receipts and typing notifications, they currently cannot
turn off delivery receipts. Adding an option for this would
give users the choice to greatly mitigate this attack. We note
disabling would have to be mutual: Alice turning off delivery
receipts should also prevent Bob from sending them, different
from how Signal currently disables read receipts. We also note
users could potentially still be linked purely by their messages
eventually, making this only a partial mitigation.

B. Drawbacks and Likelihood of Adoption

We believe that the solution we have proposed in Sec-
tion VI is both practical and cost-effective. However, there
are a few drawbacks. Most importantly, it adds complexity to
the system, and complexity always increases the likelihood of
error and vulnerability. In particular, the key rolling scheme
we suggest in Section VI-F requires increased complexity in
the back-end key management system. While the compromise
of these keys would not leak message content, it could allow
for a cheap resource denial attack on Signal.

A second important drawback of our solution is the as-
sumption that a malicious service provider cannot use network
information to identify users. As mentioned, using Tor [19], [2]
would address this, but only if enough users did so to increase
the anonymity set.

Finally, our ephemeral identities may increase complexity
for users that use Signal on multiple devices. Signal would
need to securely share or deterministically generate these keys
with other devices in a privacy-preserving way.

Given the limited scope and impact of these drawbacks,
we believe that is reasonable to believe that Signal or other
secure messengers could potentially adopt our solution.

C. Group messaging

The OTR and Signal protocols were first designed for
pairwise communication, and we have focused on such conver-
sations in this work. However, group messaging is an important
use case for private messaging services, and has recently shown
to be vulnerable to different kinds of attacks [46], [10], [47].

An interesting direction for future work would be to extend
our attacks to this setting. It is clear that received receipts
and read receipts do not work the same way in groups as
they do for two-way conversations. On the other hand, group
messages have additional group management messages which
are automatically triggered, for example, when a new member
attempts to join the group. It would be interesting to understand
if, for example, our attack could exploit these message to de-
anonymize all members of a given group chat.

Fortunately, it does seem that our main solution proposed
in Section VI would be applicable to the group chat setting:

all members of the group chat would create new, anonymous
mailboxes used only for that particular group. However, this
would still leave the difficulty of the initial configuration and
key management, which would be more complicated than that
two-party setting. We consider this to be important and useful
potential future work.

VIII. RELATED WORK

Attacks on mobile messaging. Mobile messaging services
have been hugely popular for decades, but the SMS protocol
was designed primarily for efficiency and not with privacy
in mind [26]. Usability studies have shown that many users
want or even assume that their text messages are private
[24], which has made SMS a “Goldmine to exploit” for state
surveillance [5], [21]. Even encrypted alternatives to SMS
are still targeted by hackers and state-level surveillance tools,
as seen for example by the NSO group’s Pegasus spyware,
which was used to target the text messages of journalists and
politicians in multiple countries [38].

Statistical disclosure attacks. SDAs were first proposed as
an attack on mix networks by [14], and later strengthened
to cover more realistic scenarios with fewer or different
assumptions [40], [37], [16]. More recent variants consider
the entire network, and attempt to learn as much as possible
about all sender-receiver correlations over a large number of
observations [17], [44], [30]. See [43] for a nice overview and
comparison of many existing results.

Private messaging. Perhaps in response to these highly-
publicized attacks, third-party applications which provide end-
to-end encrypted messaging, such as WhatsApp (since 2016),
Telegram, and Signal, are rapidly gaining in popularity [32].
A good overview for the interested reader would be the SoK
paper of Unger et. al. from 2015 [49].

The first cryptographically sound, scalable system for
end-to-end encrypted messaging is the OTR protocol from
2004 [6], which had significant influence on the popular
systems used today [39], [22], [9].

Since OTR, significant research has investigated how to
remove or hide metadata to provide anonymous chat appli-
cations. Indeed, similar problems have been noted in mix-
nets [34]. Many such as Ricochet [7] rely on Tor [19]. Other
techniques for obscuring metadata are injecting noise, like
Pond [33] and Stadium [48], or decentralization [31]. Many
of these solutions require sharing cryptographic identities out-
of-band, rather than build off human-friendly or already known
identities.

DC-net based messengers like Dissent [12] or Verdict [13]
have also been proposed, but suffer problems in scaling to the
number of users seen on popular messaging applications [49],
[50]. Others such as Riposte [11] have made use of private
information retrieval to achieve anonymity, but this is also
expensive in practice. We focus on sealed sender in this paper,
as it is the most widely-deployed in practice attempt to provide
sender anonymity in secure messaging.
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IX. CONCLUSION

In this work we analyze and improve upon Signal’s sealed
sender messaging protocol. We first identify a type of sta-
tistical disclosure attack (SDA) that would allow Signal to
identify who is messaging a user despite sealed sender hiding
message sources. We perform a theoretical and simulation-
based analysis on this attack, and find that it can work after
only a handful of messages have been sent to a user. Our
attack is possible because of two features of the sealed sender
protocol: (1) metadata (specifically, recipient and timing) is
still revealed, and (2) Signal sends automatic delivery receipts
back to the sender immediately after a message is received.

We suggest a protection against this attack, in which
users anonymously register ephemeral mailbox identities with
Signal, and use those to communicate rather than long-term
identities such as phone numbers. To prevent abuse, we suggest
Signal use anonymous credentials, implemented with blind
signatures, and implement a prototype that demonstrates our
solution is performant and cost-effective to deploy.

Signal has taken a first step into providing anonymous com-
munication to millions of users with the sealed sender feature.
Signal’s design puts practicality first, and as a result, does
not provide strong protection against even known disclosure
attacks. Nonetheless, we believe this effort can be improved
upon without sacrificing practicality, and we hope that our
work provides a clear path toward this end.
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APPENDIX

A. Proof of Theorem 1

Consider first an arbitrary non-associate Charlie, with prob-
ability rc of appearing in a random or target epoch. We first
analyze the probability that Alice appears above Charlie in the
ranking after n random and target epochs.

Recall that the attack maintains a “score” for each user,
increasing by 1 each time the user appears in a target epoch,

and decreasing by 1 each time the user appears in a ran-
dom epoch. Define 2n random variables X1, . . . , Xn and
Y1, . . . , Yn, corresponding to the signed difference in Alice and
Charlie’s scores during each of the n random epochs (Xi’s)
and target epochs (Yi’s). So each Xi, Yi ∈ {−1, 0, 1} and the
sum X̄ =

∑
1≤i≤n(Xi + Yi) is the difference in Alice and

Charlie’s score at the end of the attack. We wish to know the
probability that X̄ > 0.

By the stated probability assumptions, we know the ex-
pected value of all of these random variables: E[Xi] = rc−ra,
E[Yi] = ta − rc, and therefore by linearity of expectation,
E[X̄] = n(ta − ra). Crucially, note that this is independent of
Charlie’s probability rc because we included the same number
of random and target epochs.

We can now apply Hoeffding’s inequality [27] over the sum
of these 2n independent, bounded random variables Xi, Yi to
conclude that Pr[X̄ ≤ 0] ≤ exp(−n(ta − ra)2/4).

Noting that this bound does not depend on the particular
non-associate Charlie in any way, we can apply a simple union
bound over all ≤ m non-associates to obtain the stated result.

B. Proof Of Security For One-Way Sealed Sender Conversa-
tions

We now give a proof that the protocol in Section VI-B
realizes the ideal functionality in Figure 6. As mentioned, we
give this proof in the standalone model with static corruptions.

We define the simulator Sim as follows:

Setup: At startup, Sim generates long-term key pairs
(pkPi

, skPi
) for each honest user Pi ∈ PH . Next, Sim receives

a public key pkPj
for each corrupt user Pj ∈ PC from the

adversary.

Sim initializes an empty table T with format

(cid, Ps, pks,cid, sks,cid, Pr, pkr,cid, skr,cid)

where Ps is the identity of the conversation initiator,
(pks,cid, sks,cid) is the keypair used by Ps in conversation
cid, Pr is the initial receiver, and (pkr,cid, skr,cid) is the
keypair used by Pr in conversation cid. Some elements in
these entries may be empty if Sim does not know the value.
We will represent unknown elements with ·.

Sim also initializes an empty message table M with format

(cid, mid, c)

Note that the definition presented in Figure 6 is in terms
for pull notifications, while the protocol in Section VI-B is
in terms of push notifications. However, the push notification
in the protocol, modeled after how Signal actually works,
are essentially a sustained pull. That is, opening a longterm
connection is equivalent to having the receiver continuously
sending pull requests to the server. To bridge this gap, the
simulator maintains a list of open connections. At each time
step, the simulator iterates through the list of open connections
are sends a ReceiveMessage to the ideal functionality of that
players part. Similarly, we expect that honest users will do this
if they want push-style notifications.
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1) Honest user starts a conversation with an
honest user. When Sim receives the message
(ApproveNewConvo, Pr, cid) from the ideal functional-
ity, samples (pks,cid, sks,cid) ← Πssenc.SSKeyGen(1λ).
Sim retrieves the longterm information for user Pr, i.e.
pkPr

, skPr
. Add the entry

(cid, ·, pks,cid, sks,cid, Pr, pkPr
, skPr

)

to T and then does the following:
a) Encrypt c ← Πssenc.SSEnc(‘‘init’’‖pks,cid,

sks,cid, pkPr
)

b) Send c to Pservice

If Sim gets c′ from Pservice for Pr and c = c′, Sim
performs the following

a) sends an acknowledgment to Pservice on behalf of Pr
for Ps

b) receives the acknowledgment on behalf of Ps
c) sends (Approve) to ideal functionality
Otherwise, Sim sends (Disapprove) to the ideal function-
ality

2) Honest user starts a conversation with an
corrupt user. When Sim receives the message
(ApproveNewConvoCorrupt, Ps, Pr, cid) from the
ideal functionality, samples (pks,cid, sks,cid) ←
Πssenc.SSKeyGen(1λ). Sim retrieves the longterm
information for user Pr, i.e. pkPr

. Add the entry

(cid, Ps, pks,cid, sks,cid, Pr, pkPr
, ·)

to T and then does the following:
a) Encrypt c ← Πssenc.SSEnc(‘‘init’’‖pks,cid,

skPs
, pkPr

)
b) Send c to Pservice

If Sim gets an acknowledgment from Pservice for Ps, Sim
sends (Approve) to ideal functionality. Otherwise, Sim
sends (Disapprove) to the ideal functionality.

3) Corrupt user starts a conversation with an honest
user. When Sim receives a message c‖pke from Pservice
for an honest player Ph, Sim retrieves the longterm
information for that player, i.e. pkPs

, skPs
. Sim then does

the following:
a) Decrypt and verify (‘‘init’’‖pke, x, pkc) ←

Πssenc.SSDecVer(skPh
, c) On failure, Sim halts.

b) Find a player Pc with longterm public key pkPc
= pkc.

If no such player exists, Sim halts.
c) Send (StartConvo, Ph) to the ideal func-

tionality on behalf of Pc and receive
(ApproveNewConvoCorrupt, Pc, Ph, cid) in return.
Sim responds with (Approve). Sim drops the resulting
notification.

d) Generate an acknowledgment message using pke and
skh and send it to Pservice on behalf of Ph for the
identity pke

Finally, Sim adds the entry

(cid, Ph, pkPh
, skPh

, Pc, pke, ·)

to T
4) Anonymous honest user sends a message to an-

other honest user. When Sim receives the message

(NotifyAnonymousSendMessage, cid, mid, |m|) from the
ideal functionality, Sim looks up the entry

(cid, ·, pks,cid, sks,cid, Pr, pkr,cid, skr,cid)

in T and performs the following:
a) Samples m0←$ {0, 1}|m|
b) Computes c← Πssenc.SSEnc(m0, skr,cid, pks,cid)
c) Sends c to the Pservice for pks,cid from pkr,cid
d) Records the entry (cid, mid, c) in M

5) Non-anonymous honest user sends a message to an-
other honest user. When Sim receives the message
(NotifySendMessage, cid, mid, Pr, |m|) from the ideal
functionality, Sim looks up the entry

(cid, ·, pks,cid, sks,cid, Pr, pkr,cid, skr,cid)

in T and performs the following:
a) Samples m0←$ {0, 1}|m|
b) Computes c← Πssenc.SSEnc(m0, sks,cid, pkr,cid)
c) Sends c to the Pservice for pkr,cid from pks,cid
d) Records the entry (cid, mid, c) in M

6) Honest user sends a message to a cor-
rupt user. When Sim receives the message
(NotifySendMessageCorrupt, cid, mid,m, Ph, Pc)
from the ideal functionality, Sim looks up the entry

(cid, Ph, pkh,cid, skh,cid, Pc, pkc,cid, ·)

in T and performs the following:
a) Computes c← Πssenc.SSEnc(m, skh,cid, pkc,cid)
b) Sends c to the Pservice for pkc,cid from pkh,cid
c) Records the entry (cid, mid, c) in M

7) Anonymous honest user receives a message from an
honest user. When Sim receives a set of messages

{(ApproveAnonymousReceiveMessage, cid, midi, |mi|)}i∈[k]

from the ideal functionality, Sim looks up

(cid, ·, pks,cid, sks,cid, Pr, pkr,cid, skr,cid)

in T. Additionally, for each message, Sim looks for an
entry (cid, midi, ci) in M. The ideal functionality au-
thenticates to Pservice with the identity pks,cid and receives
messages {a′j‖c′j}j∈[k′] in return. Sim does the following:

a) For each message (ApproveAnonymousReceiveMessage,
cid, midi, |mi|) and associated entry
(cid, midi, ai, ci), if Pservice sent a message a′j‖c′j
such that a′j = ai and c′j = ci, sends (Approve, mid).
If no such a′j‖c′j exists, Sim sends (Approve, mid).

b) For each message a′j‖c′j , if there does not exist and
entry (cid, mid, a′j , c

′
j) for some value of mid, Sim

decrypts (mj , pkj) ← Πssenc.SSDecVer(sks,cid, ci). If
pkj = pkr,cid, the simulator aborts with an error.

8) Non-anonymous Honest user receives a message from
an honest user. When Sim receives the set of messages

{(ApproveReceiveMessage, cid, midi, |m|, Pr)}i∈[k]

from the ideal functionality, Sim looks up

(cid, ·, pks,cid, sks,cid, Pr, pkr,cid, skr,cid)
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in T. Additionally, for each message, Sim looks for an
entry (cid, midi, ci) in M. The ideal functionality au-
thenticates to Pservice with the identity pkr,cid and receives
messages {c′j}j∈[k′] in return. Sim does the following:

a) For each message (ApproveReceiveMessage, cid, midi,
|mi|, Pr) and associated entry (cid, midi, ci), if
Pservice sent a message c′j such that c′j = ci, sends
(Approve, mid). If no such c′j exists, Sim sends
(Approve, mid).

b) For each message c′j , if there does not exist and entry
(cid, mid, c′j) for some value of mid, Sim decrypts
(mj , pkj) ← Πssenc.SSDecVer(skr,cid, ci). If pkj =
pks,cid, the simulator aborts with an error.

9) Honest user receives a message from a
corrupt user. When Sim receives the message
(ApproveReceiveMessageCorrupt, cid, Ps, Pr) from
the ideal functionality, it looks up

(cid, Ph, pkh,cid, skh,cid, Pc, pkc,cid, ·)

in T. Sim authenticates to Pservice with pkh,cid and gets a
set of messages {ci}i∈[k] from Pservice. For each ci Sim
does the following:

a) decrypts (mi, pki) ← Πssenc.SSDecVer(skh,cid, ci). If
it fails, the message is dropped.

b) send the tuple (cid, Pc, Ph,mi) to the ideal function-
ality

Although the simulator is quite involved, the security
argument is quite straight forward hybrid argument, starting
with the real experiment H0. In H1, conversation opening
messages between honest parties take the ephemeral secret
key instead of the sender’s longterm secret key. Due to the
ciphertext anonymity of Πssenc, the distance between H0 and
H1 is negligible. In H2, the plaintext contents of messages
between honest users are replaced with random messages of
the same length. Due to the security of Πssenc, the distance
betweenH1 andH2 is negligible. InH3, if the service provider
delivers a message on behalf of an anonymous honest user that
the honest user did not send, the experiment aborts. Due to
the authenticity property of Πssenc, the distance between H2

and H3 is negligible. In H4, if the service provider delivers
a message on behalf of a non-anonymous honest user that the
honest user did not send, the experiment aborts. Due to the
authenticity property of Πssenc, the distance between H3 and
H4 is negligible. Finally, in H5 keys are generated randomly
by the simulator instead of the honest parties. Because the keys
are sampled at random, the distributions of H4 and H5 are the
same. H5 and the simulator above are distributed identically,
so the proof is done.

C. Protocols for Two-Way Sealed Sender Conversations

This appendix provides more details for the two-way sealed
sender solution discussed in Section VI-C.

Recall how this solution works: after an initiator sends a
sealed sender message to the long-term identity of the receiver
communicating the sender’s ephemeral identity, the receiver
generates a fresh, ephemeral identity of their own and sends
it to the sender’s ephemeral identity via sealed sender. After
this initial exchange, the two users communicate using only

Notation Type Meaning Anonymous

Ps User Sender/Initiator -
Pr User Receiver -
(pks, sks) Πssenc Keys Sender/Initiator key N
(pkr, skr) Πssenc Keys Receiver key N
(pke, ske) Πssenc Keys Ephemeral key Y
(pkes, skes) Πssenc Keys Sender/Initiator eph. key Y
(pker, sker) Πssenc Keys Receiver eph. key Y

Fig. 7: Notation for two-way sealed sender protocols

their ephemeral identities and sealed sender messages, in both
directions (two-way).

The protocol proceeds as follows: When some conversation
initiator Ps wants to start a conversation with a user Pr, the
initiator executes Initiate Two-Way Sealed Conversation (see
below). Ps starts by generating a keypair (pkes, skes) and
registering pkes with the service provider. Ps then runs the
Change Mailbox protocol (see below), which informs the
receiver of pkes by sending a message to pkr. The receiver Pr
then generates a keypair (pker, sker) and registers pker with
the service provider. Finally, the Pr runs the Change Mailbox
protocol, informing Ps about pker by sending a message to
pkes. Ps and Pr communicate using Send message, Open
Connection, and Push Message as in Section VI-B (for
brevity, these protocols have not been replicated below).

Initiate Two-Way Sealed Conversation to Pr:

1) Ps looks up the Pr’s long-term key pkr
2) Ps generates keys (pkes, skes) ← Πssenc.SSKeyGen(1λ)

and opens a mailbox with public key pkes
3) Ps runs the subroutine Change

Mailbox(Pr, pkes, sks, pkr)
4) Pr generates keys (pker, sker) ← Πssenc.SSKeyGen(1λ)

and opens a mailbox with public key pker
5) Pr runs the subroutine Change

Mailbox(Ps, pker, skr, pkes)
6) Ps records (Pr, pker, pkes, skes) and Pr records

(Ps, pkes, pker, sker) in their respective conversation
tables

7) Both Ps and Pr use send message to send a read-receipt
acknowledgment to pker and pkes respectively.

Change Mailbox(Pr, pke, sks, pkr):

1) User changing mailbox Ps does the following (note
that this user may be the conversation initiator or the
conversation receiver)

a) encrypts
c← Πssenc.SSEnc(‘‘init’’‖pke, sks, pkr)

b) connects to the server provider anonymously and sends
c‖pke to the service provider addressed to pkr.

2) The service provider opens a mailbox with public key pke
and delivers c to pkr (sealed sender)

3) When the other user Pr calls receive message, it decrypts
and verifies
(‘‘init’’‖pke, pks)← Πssenc.SSDecVer(skr, c).
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