Steganography for Realistic Distributions

Gabriel Kaptchuk (Boston University) Tushar Jois, Matthew Green, Aviel Rubin (Johns Hopkins University)

Widespread Success of Encrypted Systems

Encrypted Messengers

~2 Billion Monthly Users Encrypted Browsing

Ubiquitous Adoption and Significant Usability Progress **Censorship Resistance**

>2 Million Daily Connections

		•••••+ ••••••	×	* •		
× •			•			
						• • • • • • • •
	•••• •••••					
						•+
		• •				
		• •				
		× •••			••••••	
• •	•••••••••••••	$+^{\bullet \bullet}$	••••••			
+	• • • • • • • • • • • • • • • • • • •					
	· · · · · · · · · · · · · · · · · · ·					
	• •	× •••••		× ě		
				× •		
	<	• • • ×		••		. + * (
				+		
	•••••					• •
						ו. ×
	+ +		••••			+
	0000					• • ×
	• • • • • •				•	● + ●● +
						÷ (
	. • •					× ·
						<u> </u>

.

				× + + ●●●●●	
× ••••					••••••••••••••••••••••••••••••••••••••
	••••••••••••••••••••••••••••••••••••	+		×	
* + +					
				• • • • • • • •	
		×			· + × •
			●● ●●× + ●● _ ●		· · · ·
	+				
		× •			
				× .	+
					· · · · ·

+ +

× × · · +

۲

•

× ••••		XX X	* × × × × ×	• • • • • • • • • • • • • • • • • • •
				•
				+ × + *
			+ * * * * * * * * * * * * * * * * * * *	
			× ••••••	
	× + +			

* * · · +

.

.

+ +

+ <u>·</u> · ·

Perfect Tool: Universal Steganography!

Problem: Univ. Stegano. For Realistic Distributions Has Never Been Deployed

Our Contributions

Identify and overcome main barriers to realistic steganography

Analyze prior public key steganography protocols

* * * * • * * * • * * * + *

Propose new symmetric key construction with better performance

+ × × ·

better performance ×

· × + × ×

- Seminal work of Simmons [Sim83]
- MANY follow ups [AP98, ZFK+98, Mit99, Cac00, HLv02, RR03, Le03, LK03, vH04, BC05]

Related Work

· + + · · · · ·

× + × · × * × × + +

> • • • + × • • + ×

× * × × × * * * × *

+ * * •

• ×

e Í••×i • ·

- Seminal work of Simmons [Sim83]
- MANY follow ups [AP98, ZFK+98, Mit99, Cac00, HLv02, RR03, Le03, LK03, vH04, BC05]
- Keyless Steganography [ACI+20]

Related Work

× + ×

. × + _× .

> × + + • •

* + × × +

* * + * * * *

+ + * * * * * * *

• × × × ×

+ * •

* • • •

- Seminal work of Simmons [Sim83]
- MANY follow ups [AP98, ZFK+98, Mit99, Cac00, HLv02, RR03, Le03, LK03, vH04, BC05]

Related Work

- Keyless Steganography [ACI+20]
- Lysyanskaya and Meyerovich look at limits of using Markov Models [LM06]

- Seminal work of Simmons [Sim83]
- MANY follow ups [AP98, ZFK+98, Mit99, Cac00, HLv02, RR03, Le03, LK03, vH04, BC05]
- Keyless Steganography [ACI+20]
- Lysyanskaya and Meyerovich look at limits of using Markov Models [LM06]
- Format Transforming Encryption [LDJ+14, DCRS13b, DCS15, OYZ+20]

Related Work

• × + + · × •

> × * + * + . + .

Lv02, × • • × • • × • •

* × + + * *

• • • • • × · · · · · ×

• × • × • • • • • •

+ • •

• × •

• • • • •

- Seminal work of Simmons [Sim83]
- MANY follow ups [AP98, ZFK+98, Mit99, Cac00, HLv02, RR03, Le03, LK03, vH04, BC05]
- Keyless Steganography [ACI+20]
- Lysyanskaya and Meyerovich look at limits of using Markov Models [LM06]
- Format Transforming Encryption [LDJ+14, DCRS13b, DCS15, OYZ+20]

Related Work

Censorship Avoidance Tools

- + obfs4/ScrambleSuit [WPF13]
- Domain Fronting [FLH+15]
- Skypemorph [MLDG12]
- FTEProxy [DCRS13a]
- StegoTorus [wwy+12]
- CensorProofer [wgN+12]
- FreeWave [HRBS13]

- Seminal work of Simmons [Sim83]
- MANY follow ups [AP98, ZFK+98, Mit99, Cac00, HLv02, RR03, Le03, LK03, vH04, BC05]
- Keyless Steganography [ACI+20]
- Lysyanskaya and Meyerovich look at limits of using Markov Models [LM06]
- Format Transforming Encryption [LDJ+14, DCRS13b, DCS15, OYZ+20]

Related Work

Censorship Avoidance Tools

- + obfs4/ScrambleSuit [WPF13]
- Domain Fronting [FLH+15]
- Skypemorph [MLDG12]
- FTEProxy [DCRS13a]
- StegoTorus [wwy+12]
- ⁺CensorProofer [wGN+12]
- FreeWave [HRBS13]

Ad-Hoc Steganography + Generative Models.

- ML Steganography constructions [GGA+05, SSSS07, YHC+09, CC10, CC14, FJA17, VNBB17, YJH+18, Xia18, YGC+19, HH19, DC19, ZDR19]
- Attacking constructions [YHZ19, YWL+19, YWS+18, WBK15, KFH12, MHC+08]

+ * * + + * + * *

+ -+ +

× * * * * * * *

× * × *

•

▲
★
★
★
★

Talk Outline

01 Steganography Refresher

× × + + + . •

02 Classical Schemes + Generative Models

× * * * *

+ 03 METEOR: Dealing with Low Entropy

+ • • × + + • • •

 $\begin{array}{c} \times \\ & & & \\ & & & \\ + \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$

+ * * + + * + * *

× + • + ×

• <u>*</u>

× +

* * * *

Talk Outline

01 Steganography Refresher

* * +

02 Classical Schemes + Generative Models

* * * * + * * *

• 03 METEOR: Dealing with Low Entropy

• * * • * * * • * * *

× + ×

1. Encrypt message m as x with IND\$-CPA scheme

× + × × × × • × • × × + × +

 $^+$ Encode Message $_+$ $^{\times}$ $^{\times}$ $^{\times}$ $^{\times}$ $^{+}$ $^+$

1. Encrypt message m as x with IND\$-CPA scheme

2. For each bit x_1 of the ciphertext:

* * * * * * *

Encode Message $_{\perp}$

- 1. Encrypt message ${\tt m}$ as ${\tt x}$ with IND\$-CPA scheme
- 2. For each bit x_1 of the ciphertext:
 - a. Sample random $\mathbf{c}_{_{i}}$ from covertext distribution
 - b. If $h(c_i) = x_i$ (where h is an <u>unbiased</u> hash function) :
 - Yes: append $\mathbf{c}_{_{i}}$ to the stegotext, and proceed to next $\mathbf{x}_{_{i}}$
 - No: return to (a)

Encode Message \mathbf{L}

- 1. Encrypt message $\tt m$ as $\tt x$ with IND\$-CPA scheme
- 2. For each bit x_1 of the ciphertext:
 - a. Sample random $\mathbf{c}_{_{\mathrm{f}}}$ from covertext distribution
 - b. If $h(c_i) = x_i$ (where h is an <u>unbiased</u> hash function) :
 - Yes: append $\mathtt{c}_{_{\underline{i}}}$ to the stegotext, and proceed to next $\mathtt{x}_{_{\underline{i}}}$
 - No: return to (a)

- Decode Message
- **1. Recover** x_i as $h(c_i)$
 - 2. Decrypt ${\tt x}$ to recover ${\tt m}$

Encode Message

- 1. Encrypt message $\tt m$ as $\tt x$ with IND\$-CPA scheme
- 2. For each bit x_{i} of the ciphertext:
 - a. Sample random $\mathbf{c}_{_{\mathrm{f}}}$ from covertext distribution
 - **b.** If $h(c_i) = x_i$ (where h is an <u>unbiased</u> hash function) :
 - Yes: append $\mathtt{c}_{\mathtt{i}}$ to the stegotext, and proceed to next $\mathtt{x}_{\mathtt{i}}$
 - No: return to (a)

- Decode Message
- **1. Recover** x_i as $h(c_i)$
 - 2. Decrypt ${\tt x}$ to recover ${\tt m}$
 - Security Intuition
 - 1. x_i are all random
 - $2. \ h \ introduces \ no \ bias$
- 3. Therefore, $\texttt{c}_{_{\dot{1}}}$ are distributed as the covertext distribution

1. Lack of Appropriate Samplers

* + * * * * * * *

1. Lack of Appropriate Samplers

- Covertext distribution too complex
- Covertext distribution fundamentally unknowable (eg. human text)
- Best option: good approximation

1. Lack of Appropriate Samplers

- Covertext distribution too complex
- Covertext distribution fundamentally unknowable (eg. human text)
- Best option: good approximation

2. Unrealistic Entropy Requirements

• + • • × • × × + × • ×

× + + * * *

× × × × ×

1. Lack of Appropriate Samplers

- Covertext distribution too complex
- Covertext distribution fundamentally unknowable (eg. human text)
- Best option: good approximation

2. Unrealistic Entropy Requirements

- Low entropy means hash function likely must be biased
- Two potential outcomes:
 - Sampler never finds "good" sample
 Resampling amplifies bias

1. Lack of Appropriate Samplers

Use (Public) Generative Models

2. Unrealistic Entropy Requirements

× + × • • • + × •

Generative Models

× × +

+ • + × -

Generative Models

+ • + + * × +

* * * * * * * * * * * * * * * * * * *

+ × ×

Generative Models

+ + × *

+ • ⁺ • × +

• • • + • • • +

09

۲

•

· + .

Generative Models

+ × •

× * +

+ * * *

 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

+ + × * * * * * *

"Evidence indicates that the asteroid fell in the Yucatan Peninsula, at Chicxulub, Mexico."

· · · · · +

Generative Models

× .:

× + + •

× × .

* *

+ × + × × × × ×

"Evidence indicates that the asteroid fell in the Yucatan Peninsula, at Chicxulub, Mexico."

Generative Models

Next Word Prediction: 32% - "An" 17% - "The" 12% - "A" 23% - "However" 15% - "Since" 1% - Other Options

* * * + * * +

• • + • • • • • * + * * * + * * * *

+ ×

"Evidence indicates that the asteroid fell in the Yucatan Peninsula, at Chicxulub, Mexico." Generative Models

+ × •

Next Word Prediction: 32% - "An" 17% - "The" 12% - "A" 23% - "However" 15% - "Since" 1% - Other Options

+ × + + · ·

· + · ·

× × ×

• • • •

* • + + · · ·

+ ×

"Evidence indicates that the asteroid fell in the Yucatan Peninsula, at Chicxulub, Mexico. The"

Generative Models

"Evidence indicates that the asteroid fell in the Yucatan Peninsula, at Chicxulub, Mexico. The"

× + + , • × •

+ + × × · × Generative Models

+ × •

 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

"first importance of Yucatan Peninsula is demonstrated with the following conclusion: the Pliocene Earth has lost about seven times as much vegetation as the Jurassic in regular parts of the globe, from northern India to Siberia..."
Barriers To Practical Universal Steganography

1. Lack of Appropriate Samplers

Use (Public) Generative Models

× × ×

2. Unrealistic Entropy Requirements

Naturally Adapt Encoding Rate To Entropy

• + + + • X • * * * * * * * * * * *

× × × + + +

× + * * * * × + ×

• ×

× +

×

* * × ×

Talk Outline

01 Steganography Refresher

* * * + + +

02 Classical Schemes + Generative Models

+ 03 METEOR: Dealing with Low Entropy

• × +

× × + × + +

* * * Modolo

× * * * + * *

· × + × ×

Encode Message + * * * + + +

- 1. Encrypt message ${\tt m}$ as ${\tt x}$ with IND\$-CPA scheme
- 2. For each bit x_i of the ciphertext:
 - a. Sample random c_i from covertext distribution
 - b. If $h(c_i) = x_i$ (where h is an <u>unbiased</u> hash function) :
 - Yes: append ${\rm c}_{_{\rm i}}$ to the stegotext, and proceed to next ${\rm x}_{_{\rm i}}$
 - No: return to (a)

- 1. Encrypt message m as imes with IND\$-CPA scheme
- 2. For each bit x_1 of the ciphertext:
 - a. Sample random \mathtt{c}_{i} using <code>GENERATIVE MODEL</code>
 - b. If $h(c_i) = x_i$ (where h is an <u>unbiased</u> hash function) :
 - Yes: append $\mathtt{c}_{_{\underline{i}}}$ to the stegotext, and proceed to next $\mathtt{x}_{_{\underline{i}}}$
 - No: return to (a)

- 1. Encrypt message m as x with IND\$-CPA scheme
- 2. For each bit x_{i} of the ciphertext:
 - a. Sample random \mathtt{c}_{i} using <code>GENERATIVE MODEL</code>
 - **b**. If $h(c_i) = x_i$ (where h is an <u>unbiased</u> hash function) :
 - Yes: append $\mathtt{c}_{_{\underline{i}}}$ to the stegotext, and proceed to next $\mathtt{x}_{_{\underline{i}}}$
 - No: return to (a)

$\begin{array}{c} \text{Distribution} \\ \text{over } c_i \end{array}$

- 1. Encrypt message m as \times with IND\$-CPA scheme
- 2. For each bit x_i of the ciphertext:
 - a. Sample random c_{i} using <u>GENERATIVE MODEL</u>
 - **b.** If $h(c_i) = x_i$ (where h is a <u>cryptographic</u> hash function) :
 - Yes: append $\mathtt{c}_{_{\dot{1}}}$ to the stegotext, and proceed to next $\mathtt{x}_{_{\dot{1}}}$
 - No: return to (a)

Distribution over c_i

Context + c; (for j < i)

Encode Message $_{\perp}$ $\stackrel{+}{\times}$ $\stackrel{+}{\times}$ $\stackrel{+}{\times}$ $\stackrel{+}{\times}$ $\stackrel{+}{\times}$ $\stackrel{+}{\times}$

- 1. Encrypt message m as \times with IND\$-CPA scheme
- 2. For each bit x_i of the ciphertext:
 - a. Sample random $\mathbf{c}_{i}^{}$ using <code>GENERATIVE MODEL</code>
 - **b.** If $h(c_i) = x_i$ (where h is a <u>cryptographic</u> hash function) :
 - Yes: append $\mathtt{c}_{_{\underline{i}}}$ to the stegotext, and proceed to next $\mathtt{x}_{_{\underline{i}}}$
 - No: return to (a)

Distribution over c_i

> Might introduce bias over low entropy distributions * of c

Context + c; (for j < i)

Instantaneous Entropy Over GPT-2

* * * * * * * * + * * * *

1. Skip Low Distribution Moments

 $\begin{array}{c} & & & & \\ & + & \\ \bullet & & \times & & \\ \bullet & & & & \\ & & & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \end{array}$

+ •

Adaptation Options

* + + · ×

* * * • * ·

× + × · · × +

+ * + ×

+ + +

* + * * * * + * * * * *

. + × ×

Adaptation Options

1. Skip Low Distribution Moments

- Model is public information
- Entropy is public information
- Skip all low entropy sampling events (eg. Entropy < 4.5)

* * * * * *

* * * * * * * * * * + * + + * * * * *

1. Skip Low Distribution Moments

Adaptation Options

* * * * * * * * * * * * * *

• • •

× + × ·

* * + × * * +

× + × + * + * + × ×

+ × ×

* * * * * * * * * * * * * * *

Adaptation Options

1. Skip Low Distribution Moments

2. Accumulate Entropy

- Compile channel such that it has sufficient entropy
- Sample many tokens together

× + + × × + × * × *

* * • X • + × × + + × + + •

· × × ×

ו .• •

+ * + + • * * * * * + *

Adaptation Options

1. Skip Low Distribution Moments

2. Accumulate Entropy

+ • • • • •

* × •

Performance When Accumulating Entropy

| Parameters | Samples
(Tokens) | Time
(Sec) | Stegotext Len.
(KiB) | Overhead
(Length) |
|----------------------|---------------------|---------------|-------------------------|----------------------|
| $H_p = k = 16$ | 502.8 | 42.69 | 2.3 | 149.4x |
| $\dot{H_p} = k = 32$ | 880.4 | 128.41 | 4.1 | 261.8x |
| $H_p = k = 64$ | 1645.0 | 361.28 | 7.5 | 482.1x |
| $H_p = k = 128$ | 2994.6 | 765.40 | 13.6 | 870.7x |

Talk Outline

01 Steganography Refresher

02 Classical Schemes + Generative Models

03 METEOR: Dealing with Low Entropy

Can We Do Better In The Symmetric Key Setting?

+ × × + · · · ·

× ×

Sender

ŦŦ

× +

◆^{*} × + + | ● . • +

× • • ×

+ + • * * +

* * * + ×

+ * * + × -

* * × * * * × *

* * + * *

Receiver

* * * * * * * *

 $\overset{\scriptscriptstyle +}{\otimes}$

ゝ

+ × ×

+ × × + • × • *

Sender

× + + + +

· + × · + × + × ·

× + + × * × × + _.

×

• < * • • + × <u>*</u>

• * * * • * *

+ ×

+ × +

× • + × +

* * * *

Receiver

+ × × * + *

8

2

· × + × ×

+ · · + +

Sender

× + + • × • ×

Next Word Prediction: 32% - "An"

17% - "The" 12% - "A" +23% - "However" 15% - "Since" 1% - Other Options

• • • • •

+ • * + * * *

• + × •

+ * + * × + Receiver

* * * * * * * *

· × + ×

+ * * + * * · + +

Context

۲

+ × ×

Encoding Intuition

× • • • • En

Encrypted Message (as bits)

"The"

* * + * * * • * * • + *

Context

+ × + + . + × • × •

Decoding Intuition

× + + × + **Encryp**i (a × × +

Encrypted Message (as bits) "The"

• • • •

* * * * * * * + *

· · +

Encoding Intuition

× . × + +

* * * * * * * lition

+ * + •

* * * * * * * *

× * ×

| An | The | A | However | Since |
|----|-----|----------|---------|-------|
| | | •
• * | | |
| • | + | | | × |
| | | 50% + | | |

Encrypted Message: 00011...

An

Encoding Intuition

The

А . .

| However | Since | | |
|---------|-------|----|--|
| | | | |
| |
× | -• | |
| | | | |

+ * + • • • * * • * * +

* *

× . +

* + + × ×

× * ×

Encrypted Message: 00011...

× •

Encoding Intuition

+ + · ×

Encrypted Message:

11110... +

· ·

An The A However Since

× 50% + ×

* * + × × +

> + * *

.

Encrypted Message: 00011...

An

The

Encoding Intuition

Encrypted Message: 01101...

Encrypted Message: 11110...

| ۱ | However | Since | |
|----------|---------|-------|---|
| | | | |
| | | × | • |

Decoding Intuition

Encrypted Message begins with 01

| An | The | A | However | Since |
|-----|-----|---|---------|-------|
| + × | | × | | |
| • | + | | | × |
| | | | | |

Decoding Intuition

No information learned about encrypted message

| | An | The | А | However | Since |
|---|----|-----|---|---------|-------|
| | | | × | | + |
| • | | + | | ۰ ۹ | × |

1. While message not fully encoded:

+ METEOR

; < + + , ×

* + x * * * * * * +

• • • • * × • • • + * × +

+ • • • •

* * * * * * * * * * * * * * * * * *

+ + + × × × ×

> * * * + * * + × *

+ × *

* • • * · · ·

1. While message not fully encoded:

a. Sample and apply random mask (from PRG)

· · ·

1. While message not fully encoded:

- a. Sample and apply random mask (from PRG)
- b. Sample distribution for next c_i from model

IK

- * * * * * * * * * * * *
- × + + + *

1. While message not fully encoded:

a. Sample and apply random mask (from PRG)

b. Sample distribution for next $\mathtt{c}_{_{\pm}}$ from model

c. Use masked message to determine $\mathbf{c}_{_{1}}$

+ + * * + * *

× × × + × + + + × + × × ×

+ × + × + ***** •

1. While message not fully encoded:

- a. Sample and apply random mask (from PRG)
- b. Sample distribution for next $\mathtt{c}_{_{\pm}}$ from model
- c. Use masked message to determine \mathtt{c}_{i}
- d. Compute number of bits transferred

- + + + + + + × + ו ו

1. While message not fully encoded:

- a. Sample and apply random mask (from PRG)
- b. Sample distribution for next $\mathtt{c}_{_{\dot{1}}}$ from model
- c. Use masked message to determine $\mathbf{c}_{_{i}}$
- d. Compute number of bits transferred
- e. Mark transferred bits as encoded and add $\mathtt{c}_{_{i}}$ to message

1. While message not fully encoded:

- a. Sample and apply random mask (from PRG)
- b. Sample distribution for next \mathtt{c}_{\dagger} from model
- c. Use masked message to determine $\mathtt{c}_{_{1}}$
- d. Compute number of bits transferred
- e. Mark transferred bits as encoded and add $\mathbf{c}_{_{\dot{1}}}$ to message

Decode Message

- 1. While message not fully decoded:
 - a. Sample distribution for next $\mathbf{c}_{_{i}}$ from model $\,$
 - b. Compute number of bits transferred by \mathbf{c}_{i}
 - c. Sample and apply random mask (from PRG)
 - d. Mark transferred bits as encoded and add recovered bits to message

× × • • • • • •

| Mode | Desktop/GPU
(sec) | Laptop/CPU
(sec) | Stegotext Length
(bytes) | Overhead
(length) | Capacity
(bits/token) |
|------------------------|----------------------|---------------------|-----------------------------|----------------------|--------------------------|
| GPT-2 | 18.089 | 82.214 | 1976 | $12.36 \times$ | 3.09 |
| GPT-2 (Reorder) | 30.570 | 82.638 | 1391 | $8.69 \times$ | 4.11 |
| GPT-2 (Compress) | 11.070 | 42.942 | 938 | $3.39 \times$ | 3.39 |
| Wikipedia | 19.791 | 46.583 | 2002 | $12.51 \times$ | 0.64 |
| Wikipedia (Reorder) | 15.515 | 39.450 | 1547 | $9.67 \times$ | 0.83 |
| HTTP Headers | 49.380 | 103.280 | 6144 | $38.4 \times$ | 0.21 |
| HTTP Headers (Reorder) | 57.864 | 127.759 | 7237 | $45.23 \times$ | 0.18 |

* * * * * * * * *

· + ×

| - 18 | Device | Load | Encode | Decode | Overhead (time) |
|------|--------|-------|--------|--------|-----------------|
| | GPU | 5.867 | 6.899 | 6.095 | $1 \times$ |
| | CPU | 5.234 | 41.221 | 40.334 | $4.6 \times$ |
| | Mobile | 1.830 | 473.58 | 457.57 | 49.5× |
Benefits of Meteor's Approach

1. Implicit Adjustment

Encoding rate is asymptotically equal to entropy

* + + * * * * * * * * * * * * * *

× + × ×

Benefits of Meteor's Approach

1. Implicit Adjustment

Encoding rate is asymptotically equal to entropy

2. Concretely Efficient Enough to Really Run In Practice

Implemented and benchmarked run on GPU, CPU, and Mobile

 $\begin{pmatrix} & & & \\ & & & \\ & & + & & \\ & & & & & \end{pmatrix}$

+ × + ×

> + . . . x

Benefits of Meteor's Approach

1. Implicit Adjustment

Encoding rate is asymptotically equal to entropy

2. Concretely Efficient Enough to Really Run In Practice

Implemented and benchmarked run on GPU, CPU, and Mobile

3. Clear Security Analysis

Straightforward reduction to security of PRG

* * * * * * * * * * * * * * * *

Other Parts of Our Work

Comparison to Prior (Informal) Work

Ad-hoc Optimizations For Performance

Easy-to-use Code Demo on Google Co-Lab

* + * * + * *

 $\begin{array}{cccc} & \cdot & \cdot & & ^{+} \\ & \cdot & & \times & + \\ + & & & & \cdot \end{array}$

e Co-Lab

* * * * · * • * * ·

+ × × ×

Thanks!

ia.cr/2021/686 meteorfrom.space
Gabriel Kaptchuk (Boston University)
Tushar Jois, Matthew Green, Aviel Rubin
(Johns Hopkins University)

TEMPLATE CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

* + * * * * + * *