## Efficient Set Membership Proofs using MPC-in-the-Head

https://eprint.iacr.org/2021/1656.pdf

Aarushi Goel (JHU), Mathias Hall-Andersen (Aarhus), Gabriel Kaptchuk (BU), and Matthew Green (JHU)

## Set Membership Statements

$$
x_{1} \in L \text { or } x_{2} \in L \text { or } \ldots \text { or } x_{\ell} \in L
$$

## Set Membership Statements

$$
\begin{gathered}
x_{1} \in L \text { or } x_{2} \in L \text { or } \ldots \text { or } x_{\ell} \in L \\
R\left(x_{1}, w\right)=1 \text { or } R\left(x_{2}, w\right)=1 \text { or } \ldots \text { or } R\left(x_{\ell}, w\right)=1
\end{gathered}
$$

## Set Membership Statements

$$
\begin{gathered}
x_{1} \in L \text { or } x_{2} \in L \text { or } \ldots \text { or } x_{\ell} \in L \\
R\left(x_{1}, w\right)=1 \text { or } R\left(x_{2}, w\right)=1 \text { or } \ldots \text { or } R\left(x_{\ell}, w\right)=1 \\
\alpha \in[\ell] \text { is the "active branch" }
\end{gathered}
$$

## Set Membership Statements

- Hiding in a crowd


## Set Membership Statements

- Hiding in a crowd
- Ring Signatures

Verify $_{m}\left(\mathrm{pk}_{1}, \sigma\right)=1$ or Verify ${ }_{m}\left(\mathrm{pk}_{2}, \sigma\right)=1$ or $\ldots$ or Verify $_{m}\left(\mathrm{pk}_{p}, \sigma\right)=1$

## Set Membership Statements

- Hiding in a crowd
- Ring Signatures
$\operatorname{Verify}_{m}\left(\mathrm{pk}_{1}, \sigma\right)=1$ or $\operatorname{Verify}_{m}\left(\mathrm{pk}_{2}, \sigma\right)=1$ or $\ldots$ or Verify ${ }_{m}\left(\mathrm{pk}_{\ell}, \sigma\right)=1$
- Confidential Transactions (ala. Monero or ZCash)

SpendVerify $\left(\operatorname{coin}_{1}, \sigma\right)=1$ or $\ldots$ or SpendVerify $\left(\operatorname{coin}_{\ell}, \sigma\right)=1$

## Our Contributions

- Framework for Efficient Set Membership in MPC-in-the-Head
- Integration into known MPC-in-the-Head
- Applications:
- Smallest Symmetric PQ ring signatures
- Extremely Simple RingCT Transactions


## MPC-in-the-head [IKOS07]

Prover $_{x, w}$

Verifier ${ }_{x}$

## MPC-in-the-head [IKOS07]

Prover $_{x, w}$

Verifier

MPC over Relation Circuit

## MPC-in-the-head [IKOS07]

## Prover $_{x, k}$

Verifier

MPC over Relation Circuit

## MPC-in-the-head [IKOS07]

## Prover $_{x, w}$

Verifier

a
$\mathrm{a}=\mathrm{Com}($ Views $)$
$\qquad$

## C

MPC over Relation Circuit
$c \leftarrow$ Random
Subset of Parties

## MPC-in-the-head [IKOS07]



Verifier

## MPC-in-the-head [IKOS07]



Verifier ${ }_{x}$

$c \leftarrow$ Random Subset of Parties

Verify Consistency of Views

## Representation 1: Naive Repetition $R(x, w)=10$ or $R(x, w)=1$ or....or $R(x, \omega)=1$

$\square$ Public Input
Circuit Component


## 

Witness$\square$ Public Input


## Representation 2: Equality Check

$\square$ Witness
$\square$ Public Input
Circuit Component


## Representation 2: Equality Check

WitnessPublic Input

## Representation 3: Merkle Tree

$\square$ Public Input
Circuit Component


## Representation 3: Merkle Tree

$\square$ Public Input
Circuit Component


## Our Approach

Public InputCircuit Component


## Our Approach

Public Input

## Our Approach: 1. Integrate Preprocessing [KKW18]

## Preprocessing Coordinator



MPC over Relation Circuit

## Our Approach: 1. Integrate Preprocessing [KKW18]

## Preprocessing Coordinator



Com(Preprocessing Seeds),
Com(Views)
$\mathrm{a}=\mathrm{Com}($ Views $)$

MPC over Relation Circuit

## Our Approach: 1. Integrate Preprocessing [KKW18]

## Preprocessing Coordinator



MPC over Relation Circuit

Com(Preprocessing Seeds), Com(Views)
$\mathrm{a}=\operatorname{Com}($ Views $)$

Preprocessing Challenge
Views Challenge(s)

## Our Approach: 1. Integrate Preprocessing [KKW18]

## Preprocessing Coordinator



MPC over Relation Circuit

Com(Preprocessing Seeds), Com(Views)
$\mathrm{a}=\mathrm{Com}($ Views $)$

Preprocessing Challenge
Views Challenge(s)
$\qquad$

Open(Prepreocessing)
Open(Views)

1. Verify Correctness of Preprocessing
2. Verify Consistency of Views

# Our Approach: 2. Move Set Membership To Privacy Free Preprocessing 

Witness
Public Input
Circuit Component
Protocol Computation

## Our Approach: 2. Move Set Membership To Privacy Free Preprocessing

Witness
$\square$ Public Input
Circuit Component
Protocol Computation


## Our Approach: 2. Move Set Membership To Privacy Free Preprocessing

WitnessPublic Input
Circuit Component
Protocol Computation


Preprocessing for Protocol


## Our Approach: 3. Getting Soundness and Zero-Knowledge

```
Witness
```

$\square$ Public Input
Circuit Component
Protocol Computation


## Our Approach: 3. Getting Soundness and Zero-Knowledge

WitnessPublic Input
Circuit Component
Protocol Computation
Online (Validated via Consistency Check)
Preprocessing (Validated via. Cut-and-Choose)


UNIVERSITY

# Our Approach: 4. Binding Efficiently with Accumulator 

Witness

$\square$ Public Input

Circuit Component
Protocol Computation

Online (Validated via Consistency Check)

## Our Approach: 4. Binding Efficiently with Accumulator

```
Witness
```Public Input
Circuit Component
Protocol Computation



\section*{Our Approach: 4. Binding Efficiently with Accumulator}
```

Witness

```Public Input
Circuit Component
Protocol Computation



\section*{Our Approach: 4. Binding Efficiently with Accumulator}
```

Witness

```Public Input
Circuit Component
Protocol Computation


\section*{Our Approach: 4. Binding Efficiently with Accumulator}
```

Witness

```Public InputCircuit Component
Protocol Computation


\section*{Our Approach: 4. Binding Efficiently with Accumulator}
\(\square\) WitnessPublic InputCircuit Component
Protocol Computation

\section*{Online (Validated via Consistency Check)}

Preprocessing (Validated via. Cut-and-Choose)


\section*{Our Approach: 4. Binding Efficiently with Accumulator}


Witness

Public Input
Circuit Component
Protocol Computation


\title{
NIZK-based PQ Signatures [GMO16, cDGorRsz17,KKW18]
}
\[
\operatorname{NIPoK}\left\{(\mathrm{sk}): m \text { and } p k=\operatorname{PRF}_{\mathrm{sk}}(0)\right\}
\]

\section*{NIZK-based PQ Ring Signatures [KKW18]}
\(\operatorname{NIPoK}\left\{\left(\mathrm{sk}, \mathrm{pk}{ }^{\prime}\right): \mathrm{m}\right.\) and \(\mathrm{pk}{ }^{\prime}=\operatorname{PRF}_{\mathrm{sk}}(0)\) and \(\left.\mathrm{pk}{ }^{\prime} \in\left\{\mathrm{pk}_{1}, \mathrm{pk}_{2}, \ldots, \mathrm{pk}_{\ell}\right\}\right\}\)

\section*{NIZK-based PQ Signatures [GM016, cDGorRsz17,KKW18]}
\[
\operatorname{NIPoK}\left\{(\mathrm{sk}): m \text { and } p k=\operatorname{PRF}_{\mathrm{sk}}(0)\right\}
\]

\section*{NIZK-based PQ Ring Signatures [KKW18]}
\(\operatorname{NIPoK}\left\{\left(\mathrm{sk}, \mathrm{pk} \mathrm{l}^{\prime}\right): \mathrm{m}\right.\) and \(\mathrm{pk}^{\prime}=\operatorname{PRF}_{\mathrm{sk}}(0)\) and \(\left.\mathrm{pk}^{\prime} \in\left\{\mathrm{pk}_{1}, \mathrm{pk}_{2}, \ldots, \mathrm{pk}_{\ell}\right\}\right\}\)

\section*{[KKW18] PQ Ring Signatures}Public Input
Circuit Component


\section*{Our PQ Ring Signatures}

\begin{tabular}{c|ccc||c} 
Ring size: & \(2^{7}\) & \(2^{10}\) & \(2^{13}\) & Assumption \\
\hline Derler et al. [13] & 982 KB & 1352 KB & 1722 KB & Symmetric Key \\
Katz et al. [33] & 285 KB & 388 KB & 492 KB & Symmetric Key \\
This Work & \(\mathbf{5 2 ~ K B}\) & \(\mathbf{5 6} \mathbf{~ K B}\) & \(\mathbf{6 0} \mathbf{~ K B}\) & Symmetric Key \\
\hline \hline Ring size: & \(2^{3}\) & \(2^{6}\) & \(2^{12}\) & Assumption \\
\hline \hline Libert et al. \([39]\) & 52 MB & 94 MB & 179 MB & SIS \\
Torres et al. [51] & \(>124 \mathrm{~KB}\) & \(>900 \mathrm{~KB}\) & 61 MB & Ring-SIS \\
Esgin et al. [14] & 41 KB & 58 KB & 256 KB & M-LWE \& M-SIS \\
This Work & \(\mathbf{4 6} \mathbf{K B}\) & \(\mathbf{5 0} \mathbf{K B}\) & \(\mathbf{5 9} \mathbf{~ K B}\) & Symmetric Key
\end{tabular}

\section*{Also in the Paper}
- Non-Black Box Integration into existing MPC-in-the-Head protocols
- Super Simple \& Efficient PQ RingCT

\section*{Thanks!}
https://eprint.iacr.org/2021/1656.pdf

Aarushi Goel (JHU), Mathias Hall-Andersen (Aarhus), Gabriel Kaptchuk (BU), and Matthew Green (JHU)

Ring size:
Derler et al. [13] Katz et al. [33] This Work (Server) This Work (Laptop) 52 KB 2163 m

Server: Xeon E5-2695 (18 Cores, 2.10 GHz)

Server: Xeon E5-2666 (10 Cores, 2.60 GHz)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ring/group size:} & \multicolumn{2}{|l|}{\(2^{7}\)} & \multicolumn{2}{|l|}{\(2^{10}\)} & \multicolumn{2}{|l|}{\(2^{13}\)} \\
\hline & \(|\sigma|\) & \(t\) & \(|\sigma|\) & \(t\) & \(|\sigma|\) & \(t\) \\
\hline Derler et al. [21] & 982 KB & - & 1.35 MB & - & 1.72 MB & - \\
\hline Here & 285 KB & 2.0 s & 388 KB & 2.8 s & 492 KB & 3.6 s \\
\hline Boneh et al. [12] & 1.37 MB & - & 1.85 MB & - & - & - \\
\hline Here & 315 KB & 2.3 s & 418 KB & 3.0 s & 532 KB & 3.8 s \\
\hline
\end{tabular}

\section*{Super Simple PQ RingCT Transactions}

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin
2. Double-spend protection
3. Output coin well formed
4. Range proofs

\section*{Super Simple PQ RingCT Transactions}

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin
2. Double-spend protection
3. Output coin well formed
4. Range proofs

Existing Approaches:

Take independent approaches and duct tape together

\section*{Super Simple PQ RingCT Transactions}

\section*{Parts of a PQ RingCT Construction:}
1. Demonstrating authorization to spend hidden coin
2. Double-spend protection
3. Output coin well formed
4. Range proofs


\section*{Super Simple PQ RingCT Transactions}

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin
2. Double-spend protection
3. Output coin well formed
4. Range proofs


\section*{Super Simple PQ RingCT Transactions}

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin (ring signature)
2. Double-spend protection
3. Output coin well formed
4. Range proofs


\section*{Super Simple PQ RingCT Transactions}

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin (ring signature)
2. Double-spend protection (LowMC as PRF)
3. Output coin well formed
4. Range proofs


\section*{Super Simple PQ RingCT Transactions}

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin (ring signature)
2. Double-spend protection (LowMC as PRF)
3. Output coin well formed (Trivial addition)
4. Range proofs


\section*{Super Simple PQ RingCT Transactions}

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin (ring signature)
2. Double-spend protection (LowMC as PRF)
3. Output coin well formed (Trivial addition)
4. Range proofs (Do addition without overflow)
```

