Efficient Set Membership Proofs using MPC-in-the-Head

https://eprint.iacr.org/2021/1656.pdf

Aarushi Goel (JHU), Mathias Hall-Andersen (Aarhus), Gabriel Kaptchuk (BU), and Matthew Green (JHU)

$\mathbf{x}_1 \in \mathbf{L} \text{ or } \mathbf{x}_2 \in \mathbf{L} \text{ or } \dots \text{ or } \mathbf{x}_{\ell} \in \mathbf{L}$

$$x_1 \in L \text{ or } x_2 \in L \text{ or } \dots \text{ or } x_{\ell} \in L$$

R(x₁,w)=1 or R(x₂,w)=1 or ... or R(x_{\ell},w)=1

$$x_1 \in L \text{ or } x_2 \in L \text{ or } \dots \text{ or } x_{\ell} \in L$$

R(x₁,w)=1 or R(x₂,w)=1 or ... or R(x_{\ell},w)=1

 $\alpha \in [\ell]$ is the "active branch"

- Hiding in a crowd

- Hiding in a crowd
- Ring Signatures

 $Verify_m(pk_1,\sigma)=1 \text{ or } Verify_m(pk_2,\sigma)=1 \text{ or } \dots \text{ or } Verify_m(pk_\ell,\sigma)=1$

- Hiding in a crowd
- Ring Signatures

 $Verify_{m}(pk_{1},\sigma)=1 \text{ or } Verify_{m}(pk_{2},\sigma)=1 \text{ or } \dots \text{ or } Verify_{m}(pk_{\ell},\sigma)=1$

- Confidential Transactions (ala. Monero or ZCash)

SpendVerify(coin₁, σ)=1 or ... or SpendVerify(coin₁, σ)=1

Our Contributions

- Framework for Efficient Set Membership in MPC-in-the-Head
- Integration into known MPC-in-the-Head
- Applications:
 - Smallest Symmetric PQ ring signatures
 - Extremely Simple RingCT Transactions

Prover

Prover_{x,w}

MPC over Relation Circuit

 $\mathsf{Verifier}_{\mathsf{x}}$

MPC-in-the-head [IKOS07] Prover ,w a = Com(Views) Verifier A

MPC over Relation Circuit

Representation 1: Naive Repetition R(x1, W)=1 or R(x2, W)=1 or ... or R(x2, W)=1 or ... or R(x2, W)=1

Witness

Public Input

Circuit Component

Representation 1: Naive Repetition R(x1,w)=1 or R(x2,w)=1 or ... or R(x2,w)=1 or ... or R(x2,w)=1

Witness

Public Input

Circuit Component

Representation 2: Equality Check

BOST

Representation 2: Equality Check

Representation 3: Merkle Tree

 $R(x_1, w)=1$ or $R(x_2, w)=1$ or ... or $R(x_{\ell}, w)=1$

Witness

Public Input

Circuit Component

Representation 3: Merkle Tree

Witness

Public Input

Circuit Component

Our Approach

Our Approach

Preprocessing Coordinator

MPC over Relation Circuit

Preprocessing Coordinator

Com(Preprocessing Seeds), Com(Views)

a = Com(Views)

MPC over Relation Circuit

Preprocessing Coordinator

MPC over Relation Circuit

Com(Preprocessing Seeds), Com(Views)

Preprocessing Challenge Views Challenge(s)

MPC over Relation Circuit

Com(Preprocessing Seeds), Com(Views)

Preprocessing Challenge Views Challenge(s)

Open(Prepreocessing) Open(Views)

1. Verify Correctness of Preprocessing 2. Verify Consistency of Views

Our Approach: 2. Move Set Membership To Privacy Free Preprocessing

Witness
Public Input
Circuit Component
Protocol Computation

Online (Validated via Consistency Check)

Preprocessing (Validated via. Cut-and-Choose)

Our Approach: 2. Move Set Membership To Privacy Free Preprocessing

Our Approach: 2. Move Set Membership To Privacy Free Preprocessing

Our Approach: 3. Getting Soundness and Zero-Knowledge

Our Approach: 3. Getting Soundness and Zero-Knowledge

Online (Validated via Consistency Check)

Our Approach: 4. Binding Efficiently with Accumulator

Our Approach: 4. Binding Efficiently with Accumulator

NIZK-based PQ Signatures [GM016, CDGORRSZ17,KKW18]

NIPoK{(sk) : m and pk = $PRF_{sk}(0)$ }

NIZK-based PQ Ring Signatures [KKW18]

NIPoK{(sk,pk') : m and pk' = PRF_{sk}(0) and pk' \in {pk₁, pk₂, ..., pk_i} }

NIZK-based PQ Signatures [GM016, CDGORRSZ17,KKW18]

NIPoK{(sk) : m and pk = $PRF_{sk}(0)$ }

NIZK-based PQ Ring Signatures [KKW18]

NIPoK{(sk,pk') : m and pk' = PRF_{sk}(0) and $pk' \in \{pk_1, pk_2, ..., pk_k\}$

Set Membership

Our PQ Ring Signatures

Ring size:	2^7	2^{10}	2^{13}	Assumption
Derler et al. [13]	982 KB	1352 KB	1722 KB	Symmetric Key
Katz et al. $[33]$	$285~\mathrm{KB}$	388 KB	492 KB	Symmetric Key
This Work	52 KB	56 KB	60 KB	Symmetric Key
Ring size:	2^3	2^6	2^{12}	Assumption
Libert et al. [39]	$52 \mathrm{MB}$	94 MB	179 MB	SIS
Torres et al. [51]	> 124 KB	$>900~\mathrm{KB}$	61 MB	Ring-SIS
Esgin et al. [14]	41 KB	$58 \mathrm{KB}$	256 KB	M-LWE & M-SIS
This Work	46 KB	50 KB	59 KB	Symmetric Key

Also in the Paper

- Non-Black Box Integration into existing MPC-in-the-Head protocols
- Super Simple & Efficient PQ RingCT

Thanks!

https://eprint.iacr.org/2021/1656.pdf

Aarushi Goel (JHU), Mathias Hall-Andersen (Aarhus), Gabriel Kaptchuk (BU), and Matthew Green (JHU)

Ring size:	2	7	2^1	0	2	13
	$ \sigma $	t	$ \sigma $	t	$ \sigma $	t
Derler et al. $[13]$	982 KB		$1352~\mathrm{KB}$		1722 KB	
Katz et al. $[33]$	$285~\mathrm{KB}$		388 KB		$492~\mathrm{KB}$	
This Work (Server)	$52~\mathrm{KB}$	$126 \mathrm{\ ms}$	56 KB	$210 \mathrm{~ms}$	60 KB	$1980 \mathrm{\ ms}$
This Work (Laptop)	$52~\mathrm{KB}$	$2163~\mathrm{ms}$	56 KB	$3437 \ \mathrm{ms}$	$60~\mathrm{KB}$	$16080\ \mathrm{ms}$
*						
Server: Xeon E5-2695 (18 Cores, 2.10 GHz)		Ring/group size:	2^{7}	2^{10}	2^{13}	
Υ.	,	,		$ \sigma $ t	$ \sigma $ t	$ \sigma $ t
			Derler et al. [21] Here	982 KB — 285 KB 2.0 s	1.35 MB — 388 KB 2.8 s	1.72 MB — 492 KB 3.6 s
Server: Xeon E5-2666 (10 Core	2 60 GH	7)	Boneh et al. [12]	1.37 MB —	1.85 MB —	

Here

315 KB 2.3 s

418 KB 3.0 s

Server: Xeon E5-2666 (10 Cores, 2.60 GHz)

BOSTON UNIVERSITY

532 KB 3.8 s

- 1. Demonstrating authorization to spend hidden coin
- 2. Double-spend protection
- 3. Output coin well formed
- 4. Range proofs

Parts of a PQ RingCT Construction:

- 1. Demonstrating authorization to spend hidden coin
- 2. Double-spend protection
- 3. Output coin well formed
- 4. Range proofs

Existing Approaches:

Take independent approaches and duct tape together

Parts of a PQ RingCT Construction:

- 1. Demonstrating authorization to spend hidden coin
- 2. Double-spend protection
- 3. Output coin well formed
- 4. Range proofs

Existing Approaches: Take independent approaches and duct tape together

Our Approach:

Throw it into a ZK Proof and don't worry about it

- 1. Demonstrating authorization to spend hidden coin
- 2. Double-spend protection
- 3. Output coin well formed
- 4. Range proofs

Existing Approaches:	Our Approach:
Take independent approaches and duct tape together	Throw it into a ZK Proof and don't worry about it

- 1. Demonstrating authorization to spend hidden coin (ring signature)
- 2. Double-spend protection
- 3. Output coin well formed
- 4. Range proofs

Existing Approaches:	Our Approach:	
Take independent appro- and duct tape togeth	Throw it into a ZK Proof an don't worry about it	nd

- 1. Demonstrating authorization to spend hidden coin (ring signature)
- 2. Double-spend protection (LowMC as PRF)
- 3. Output coin well formed
- 4. Range proofs

Existing Approaches:	Our Approach:
Take independent approaches and duct tape together	Throw it into a ZK Proof and don't worry about it
	BOSTON

- 1. Demonstrating authorization to spend hidden coin (ring signature)
- 2. Double-spend protection (LowMC as PRF)
- 3. Output coin well formed (Trivial addition)
- 4. Range proofs

Existing Approaches:	Our Approach:	
Take independent approaches and duct tape together	Throw it into a ZK Proof and don't worry about it	
		BOSTON

Parts of a PQ RingCT Construction:

- 1. Demonstrating authorization to spend hidden coin (ring signature)
- 2. Double-spend protection (LowMC as PRF)
- 3. Output coin well formed (Trivial addition)
- 4. Range proofs (Do addition without overflow)

 Existing Approaches:
 Our Approach:

 Take independent approaches and duct tape together
 Throw it into a ZK Proof and don't worry about it